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SIZE BIMODALITY IN 

PLANT POPULA TIONS: 

AN ALTERNA TIVE HYPOTHESIS1 

Michael Huston2 

Bimodal size distributions have recently been re? 

ported in even-aged populations of freshwater fish 

(Shelton et al. 1979, Timmons et al. 1980), coniferous 
and broad-leaved trees (Ford and Newbould 1970, Ford 

1975, Mohler et al. 1978), a broad-leaved herb (Ford 
1975, Ford and Diggle 1981), and a grass, Festuca 

paradoxa (Rabinowitz 1979). Such bimodality in 

monospecific plant populations has been thought to 
result from competition in which large plants preempt 
resources and suppress the growth of small plants (Ford 
1975, Ford and Diggle 1981). This mechanism of dom? 
inance and suppression is expected to produce a pattern 
of increasing bimodality with increasing plant density. 
However, Rabinowitz (1979) found the opposite den? 

sity response in Festuca paradoxa. I illustrate here an 
alternative mechanism for producing bimodality, which 

provides a plausible explanation for the unexpected 
pattern of increased bimodality at decreased planting 
density found by Rabinowitz (1979). 

Bimodal size distributions can result from initially 
unimodal size distributions when there is discontin? 
uous variation in exponential growth rates among in? 
dividuals. Normally distributed variation in exponen- 

tial growth rates will not produce bimodality. Sources 
of discontinuous variation may be genetic heteroge- 
neity, environmental heterogeneity, or dominance-and- 

suppression competition. Such competition may be 
considered asymmetric because the resulting negative 
effects are experienced only by the smaller plants. The 

expected distribution of mass resulting from asym? 
metric competition becomes more bimodal as increas? 

ing plant density increases the number of suppressed 
plants. Symmetric competition, in which each indi? 
vidual has a negative effect on its competitors propor? 
tional to its size, can also produce bimodality, but only 
in spatially random populations, where variation in 
the number of neighbors produces variation in expo? 
nential growth rates. 

In a spatially random scatter of points, the expected 
number of points within an area of some specified size 
A can be determined using the Poisson function with 
the parameter equal to the mean number of points in 
A. If the points represent plants and A is the area from 
which one plant draws resources (i.e., the zone of re? 
source depletion), one can predict the number of neigh? 
bors within each plant's zone of resource depletion. If 
a plant's growth rate is inversely proportional to the 
number of its neighbors, the reduction in the plant's 
intrinsic growth rate caused by resource depletion can 
be calculated. Thus, it is possible to use the distribution 
of the number of neighbors to determine the distri? 
bution of reduction in growth rate expected in a ran? 

domly spaced plant population of known density (Ta? 
ble 1). The mean reduction in growth rate increases 

monotonically with increasing density, but the vari? 
ance is greatest at intermediate densities. The primary 
difference between spatially random and spatially uni- 
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Table 1. Poisson frequency distributions of the number of neighbors within area A, for plants in spatially random populations 
with various mean densities, where A is the area of one plant's zone of resource depletion. Growth rate multipliers* based 
on these values are shown, for comparison with corresponding multipliers for spatially uniform populations. 

* The growth rate multiplier is calculated as l/(iV + 1), where N is the number of neighbors. Actual growth rate is the 
product of this multiplier and the intrinsic growth rate. 

form populations is in the variances ofthe growth rate 

reductions, rather than in the means. Since each in? 
dividual in a spatially uniform population has the same 
number of neighbors, the variance is zero. 

Symmetric competition among seedlings in a spa? 
tially random population was simulated using the ex? 

ponential growth function mt = m0ert, where m0 = 

initial (i.e., seed) mass, r = exponential growth rate, 
and mt = seedling mass at time t. This is a reasonable 
model for seedling growth (Fresco 1973). In these sim? 

ulations, each plant was randomly assigned values for 

ra0, r, and germination time chosen from normal dis? 
tributions (for ra0, mean = 0.64 mg, sd = 0.14 mg; for 

r, mean = 0.07mg-mg_1-d_1,SD = 0.01 mg-mg_1-d_1; 
for germination time, mean = 12 d, sd = 1 d). Values 
for all parameters were based on data for Festuca par- 
adoxa (Rabinowitz 1979, Turner and Rabinowitz 

1983). Each individual was randomly assigned a num? 
ber of neighbors based on the Poisson distribution for 
a given mean density. The growth rate reduction factor 

resulting from neighbors within each plant's zone of 
resource depletion was calculated as the inverse of the 
number of plants within the zone, including the central 

plant. This reduction factor was multiplied by the ran? 

domly assigned exponential growth rate to determine 

the actual exponential growth rate (r) for each plant. 
Typical results for a simulation of 50 d of growth are 

presented in Fig. 1. 

Bimodality produced by this model is a consequence 
of the discontinuous distribution of exponential growth 
rates resulting from a Poisson distribution of the num? 
ber of neighbors. Incorporating a distance-weighting 
factor between interacting plants tends to make the 
distribution more continuous and slow the appearance 
of bimodality, but does not affect the qualitative con? 

clusions; there will always be some isolated plants at 
an appropriately chosen density. While a very simple 
exponential growth model was used in these simula? 

tions, any growth model with a positive second deriv- 
ative would produce the same qualitative results. 

The density response of the Poisson-generated pat? 
tern of exponential growth rates is maximum bimo? 

dality of size distributions at intermediate densities 

(Fig. 1). At densities sufnciently low that most indi? 
viduals have no neighbors (e.g., uniform distribution), 
there is no variance resulting from neighbor effects and 
no bimodality. At high densities, all individuals share 
resources with neighbors, and variance in growth rates 
is low enough to slow or prevent the appearance of 

bimodality. In contrast to bimodality resulting from 
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Fig. 1. Distributions of simulated seedling masses and ln-transformed masses for spatially random populations of 200 
individuals at five densities, and for one spatially uniform population of 200 individuals, after 50 d of growth. Bimodality 
is more easily detected in ln-transformed data than in the untransformed data. 

asymmetric competition, bimodality from symmetric 
competition is produced without any competitive in? 
teraction between large and small plants. Small plants 
compete with other small plants in clusters by depleting 
resources in the local area but do not interact with 

faster-growing isolated individuals. 
The pattern produced by these simulations is very 

similar to the increase in bimodality with decreased 
densities that was found in experiments with Festuca 

paradoxa (Rabinowitz 1979) (Fig. 2). The reduced size 
of the mode of smaller plants in comparison with the 
simulated distributions (Fig. 1) may result from re? 
duced viability of smaller seeds, since the density of 

seedlings was approximately half the planting density. 
This pattern of increased bimodality with decreasing 
plant density is the opposite of the pattern that would 
be produced by dominance and suppression alone. 
While there is no reason that asymmetric competition 

(dominance and suppression) and symmetric compe? 
tition (resource depletion) cannot occur simultaneous- 

ly, the low growth rates resulting from extreme resource 

depletion may slow or prevent the expression of dom? 
inance and suppression (e.g., Turner and Rabinowitz 

1983). 
Asymmetric competition probably occurs most often 

for light, when tail plants shade smaller individuals but 
are not shaded themselves (Ford and Diggle 1981). 
Asymmetric competition might also occur where large 
individuals preempt resources, such as water in deserts. 

Symmetric competition seems more likely to occur 

among plants of smaller size, for soil nutrients or mois? 

ture; these resources may be depleted by many plants 
without any individual obtaining a monopoly. 

During the growth of a plant population or com? 

munity, there is likely to be a shift from symmetric 
competition to asymmetric competition as plant cover 
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Fig. 2. Actual distributions of seedling mass and ln-trans- 
formed masses from experimental plantings at five densities 
of hand-broadcast seed for Festuca paradoxa, after ~45 d of 
growth. Final densities (plants/cm2) are given and initial seed 
densities are in parentheses. For 16 seeds/cm2, one of three 
replicates is presented; the other four histograms are com? 
binations of three replicates each. Calculated from data in 
Rabinowitz (1979); the logarithmic plots are redrawn from 
fig. 1 of that paper. 

increases and light becomes limiting. Differences in 

plant architecture that affect the intensity of light com? 

petition (such as narrow-leaved grasses vs. broad-leaved 

forbs) should also affect the relative importance of each 

type of competition (e.g., Turner and Rabinowitz 1983). 
Regular, rather than random, distributions of adult 

plants are often found in natural plant populations 
(Harper 1977). Such regular distributions can be de? 
rived from initially random distributions of seeds if 

slowly growing individuals in dense clusters die or are 

overgrown by fast-growing (initially isolated) plants. 
Symmetric competition in a randomly distributed pop? 
ulation can produce the variation in plant size neces- 

sary as an initial condition for asymmetric, "one-sid- 
ed" competition to occur (Ford and Diggle 1981). 

This simple model based on symmetric competition 
in a spatially random population provides an alter? 
native mechanism for the appearance of bimodality. 
The model may explain why increasing plant density 
in experiments with regularly spaced plants (Ford 1975, 
Ford and Diggle 1981) produces results that conflict 
with patterns found in experiments with a random spa? 
tial pattern (Rabinowitz 1979). 
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DYNAMICS OF SOIL SEED POOLS IN 

BURNED AND UNBURNED 

SAGEBRUSH SEMI-DESERTS1 

M. A. Hassan2 3 and N. E. West2 

Description of soil seed pools in stable and seral 

vegetation have frequently been based on one sample 
in time and space (Cook 1980, Roberts 1981). Soil seed 

pools are thus rarely monitored in different seasons at 
the same site. Such patterns might be important in 

explaining successional processes such as the recovery 
of sagebrush semi-desert (West 1983) after fire. 

All previous studies of soil seed pools in sagebrush- 
grass vegetation (Young and Evans 1975, 1977, Young 
et al. 1976) have taken place on sites that were seriously 
depleted of their perennial grass component by exces- 
sive livestock grazing. Our study site had a modicum 
of the introduced annual grass Bromus tectorum and 
much native perennial bunchgrass prior to fire (West 
and Hassan 1985). This area had not been burned for 
at least the past 100 yr, as indicated by the size and 
form of the fire-susceptible, nonsprouting and long- 
lived Artemisia tridentata ssp. wyomingensis and the 
few scattered Juniperus osteosperma. 

We measured the importance of soil seed pools in 
the regeneration of vegetation after a mid-summer (26 
July 1981) wildfire near Mills in Juab County, Utah. 
Details on the location and environment of the study 
site, the wildfire, and recovery of the vegetation have 
been published by West and Hassan (1985). Here we 
describe the soil seed pools on burned and unburned 

plots over the first 15 mo following the fire. 

Methods 

Vegetation was sampled (West and Hassan 1985) 5- 
10 d before the fire. Eight remaining patches of un- 

burned vegetation were paired with the nearest burned 
areas on the same site in terms of elevation, slope, 
exposure, and soil profiles. Similarity of preburn total 

plant cover between plots was checked on a 1:8000 
scale enlargement of a color-infrared aerial photograph 
taken by the Apollo lunar mission of 1 July 1975. The 
scattered Juniperus had unique spatial positions that 
could be used to interpret locations on the preburn 
aerial photos and on the ground after the burn (snags 
were left standing). Three pairs of burned and un- 
burned plots that represented the greatest similarity in 
terms of total vegetation cover (as seen in the aerial 

photo enlargement), elevation, slope, and soil textural 
Series were chosen from the eight possible pairs. 

Ground surface and vascular plant cover were as- 
sessed on 2 September 1981 and 28 July 1982 by meth? 
ods described in West and Hassan (1985). Soil seed 

pools were sampled from randomly placed locations 
with a 5.4 cm diameter soil bulk density sampler driven 
to 5 cm depth. Twenty samples per plot were taken at 
each sampling date: 22 September 1981, 11 December 

1981, 25 March 1982, and 11 September 1982. 
The relationship of soil seed pools to the surrounding 

plants or "not" spots (where shrubs were centered be? 
fore the fire) was determined from a large-scale map 
of each plot that was drawn within a month after the 

fire, when the accumulations of ash and stumps of the 
shrubs were still evident. 

All samples were air-dried at room temperatures for 
1-2 d and then stored in a cold room (0?-2?C) to pre- 
vent germination until separation within 3 mo. "Seeds" 
are defined here in a general way, with fruits or cary- 
opses counted as "seeds" for some taxa. 

Coarse materials were first removed by sieving (0.5- 
cm mesh). Materials passing through the sieve were 
then mixed in a high-density salt solution (Malone 
1967). After 1 min of agitation, the organic material 
was skimmed from the top of the solution and washed 
over a 25-/Ltm mesh sieve. The agitation, flotation, 

skimming, and rinsing operation was repeated three 

times for each sample. 
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