REGULARIZATION BY TRUNCATED TOTAL LEAST SQUARES*

R. D. FIERRO!, G. H. GOLUB!, P. C. HANSENS AND D. P. O’'LEARYY

Abstract. The Total Least Square (TLS) method is used successfully as a method for noise
reduction in linear least squares problems in a number of applications. The TLS method is suited to
problems in which both the coefficient matrix and the right-hand side are contaminated by errors.
This paper focuses on the use of TLS for solving problems with very ill-conditioned coefficient
matrices (so-called discrete ill-posed problems), where some regularization is necessary to stabilize
the computed solution. In particular, we propose a truncated TLS method in which the small
singular values are discarded, discuss the regularizing properties of this method, and present an
iterative algorithm based on Lanczos bidiagonalization.
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1. Introduction. The Total Least Squares (TLS) method is a technique for
solving overdetermined linear systems of equations. It was independently derived in
several literatures, and is known by statisticians as the errors in variables model.
Numerical analysts came to know it through the work of Golub and Van Loan [10]
and Van Huffel and Vandewalle [25, 26, 27], and this literature has advanced the
algorithmic and theoretical understanding of the method.

The development of the TLS technique was motivated by linear models Az =~ b
in which both the coefficient matrix A and the right-hand side b are subject to errors.
In the TLS method one allows a residual matrix as well as a residual vector, and the
computational problem becomes:

o

(1) min ||(A, b) — (A, b)||r  subject to b=Az.
In contrast to this, the ordinary Least Squares (LS) method requires that A=A, and
minimizes the 2-norm of the residual vector b — b.

Recently, Fierro and Bunch [5] extended the TLS technique to problems where the
matrix A is nearly rank deficient, i.e., where A has one or more small singular values,
and where there is a well-defined gap between the large and small singular values
of A. Their idea is to simply ignore all the small singular values of (A, b) and treat
the problem as an exactly rank-deficient one. We shall call this technique truncated
TLS. The technique is similar in spirit to truncated SVD, a natural generalization of
the ordinary LS method for nearly rank deficient problems,; where small singular values
of A are ignored. In both methods, the almost redundant informationin (A, b) and A,
respectively, associated with the small singular values, is discarded and the original
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ill-conditioned problem is replaced with another near-by and more well-conditioned
problem with an exactly rank-deficient matrix. The major difference between the
methods lies in the way that this is done: in truncated SVD the modification depends
solely on A, while in truncated TLS the modification depends on both A and b.

Fierro and Bunch also made a sensitivity analysis for the truncated TLS technique
applied to a nearly rank-deficient A and showed how subspace sensitivity translates
to solution sensitivity [6]. The conclusion from their analysis is that truncated TLS
is superior to truncated SVD when the right-hand side has large components cor-
responding to the small singular values that are retained (as in the full-rank case).
An underlying assumption of this analysis is that the resulting rank-deficient system,
obtained by deleting the small singular values, is well conditioned.

A related analysis which also focuses on the similarities between the truncated
SVD and truncated TLS solutions to problems with well-defined numerical rank has
been given by Wei [30, 31].

There are also many ill-conditioned problems arising in practical applications for
which A does not have a well-determined numerical rank, and instead its singular
values decay gradually to zero. Typically, these problems arise in connection with the
numerical treatment of ill-posed problems, e.g., in spectroscopy, image processing,
and nondestructive testing [12]. The discrete systems Az & b derived from such ill-
posed problems are often called discrete ill-posed problems, as they inherit many of
the difficulties of the underlying ill-posed problem and therefore require a specialized
treatment including some form of regularization [13] in order to suppress the effects
of errors.

Most regularization methods used today assume that the errors in Az =~ b are
confined to the right-hand side. Although this is true in many applications there are
also problems in which both A and b are contaminated by errors. For example, A
may be available only by measurement, or may be an idealized approximation of the
true operator. Discretization typically also adds some errors to the matrix A. Hence,
there is a need for developing methods that take into account the errors in A and
their size relative to those in b.

The purpose of this paper is to investigate the truncated TLS technique and show
that it produces a regularized solution. Moreover, we propose an iterative algorithm
for computing the truncated TLS solution, based on Lanczos bidiagonalization. Our
algorithm is efficient when the number of retained singular values of (A4, b) is small
compared to the dimensions of A.

The basis for our analysis is the singular value decomposition of A, given by

n

(2) A=USVT =3 o],

i=1
where U = (u1,...,un) and V = (v1,...,v,) have orthonormal columns, and ¥ =
diag(oy,...,0n) with o1 > -+ > o,,. Then the instabilities associated with discrete

ill-posed problems can easily be illustrated. Consider the ordinary LS solution, which
can be written as

n 'Tb

Z u;
1,8 = v; .
;

i=1

Due to the division by small singular values oy, the solution z1,s may be dominated
by components associated with the errors in b. Therefore, regularization is necessary
to stabilize the solution.



For example, in truncated SVD this is achieved by truncating the above sum
at k < n:

3) Ly = Z u; Vi .

Tikhonov regularization [12, 13] is another well-known technique in which one solves
the problem (with a given X)

(4) min { ||[Az —b||2 4+ N2 L2},

where L i1s a matrix of full row rank used to control the size of the solution vector. It
is easy to prove that if L = I, then the solution to (4) is given by

k 2 T
- o; u; b '
() P=D T

showing that this approach suppresses the components of the solution corresponding
to the small singular values of A, see; e.g., [12, §5.1] or [16]. In this paper we prove
that the same is true for truncated TLS.

A fundamental concept that needs to be mentioned here is the discrete Picard
condition [15]. This criterion states that the coefficients u b**2<* associated with the
unperturbed right-hand side 5*2°* must, on average, decay faster than A’s singular
values—otherwise regularization does not lead to a stabilized solution.

Our paper is organized as follows. Section 2 introduces our main idea, the trun-
cated TLS algorithm, and the regularizing properties of this algorithm are analyzed in
83 and §4. In §5 we present an iterative algorithm based on Lanczos bidiagonalization
that avoids the computation of the complete SVD of (A, b). Regularization problems
in general form are briefly discussed in §6. Finally, in §7 we present numerical results.
We do not address the important issue of scaling of A and b; see instead [27, §3.6.2]
for some details.

2. Truncated TLS. We shall first make precise what we mean by a truncated
TLS solution, and in the next two sections we analyze this solution by means of the
SVD.

The standard approach to TLS, developed by Golub and Van Loan [10], is based
on the SVD of (A, b). Recently, computationally cheaper techniques based on rank
revealing orthogonal factorizations have also appeared [2, 29]. For clarity, in this
section we shall confine ourselves to the SVD-based approach, and return to compu-

tational and algorithmic aspects in §5. Given an m x n matrix A and an m-vector b,
the standard TLS procedure is the following [27, §3.6.1]:

ALGoRrITHM TLS
1. Compute the SVD of the compound matrix (4, b):

n+1
(6) (A, b)=USVT =) w60
i=1
with 5’1 Z e 2 &n+1-
2. Determine the largest integer p for which
(7) 5'p > a'p.l_l and ‘722 = (6n+1,p+1 .. ~17n+1,n+1) ;é 0.
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3. Partition the matrix V such that (with ¢ = n — p+ 1):

p q
e
= Vit Via T n
8 V=~ - .
®) <V21 sz) T 1

4. Compute the minimum norm TLS solution z, as

(9) Zp = Vi Vi = —Via Vi |[Vas|l5 % .

In (9), VQTZ denotes the pseudoinverse of V55 which is easy to compute because Va5 is a
vector. This algorithm includes the extensions from [27]. In particular, the first con-
dition in step 2 ensures that ALGORITHM TLS computes the unique minimum norm
solution, while the second condition ensures the existence of a solution. Together, the
two conditions ensure that o, > Gp41 (in fact, (7) is equivalent to o, > &p41).

The norms of #, and the corresponding TLS residual matrix are given by

(10) 20l = /|| Vaal|;* — 1

(11) 104, 8) = (A, B)llp = \ /o2y + o 02y

We see that ||Z,||2 increases with p while the residual norm decreases with p.

As mentioned in the Introduction, the approach taken in the truncated SVD
technique is simply to compute the SVD of the coefficient matrix A, neglect the small
singular values, and then solve a modified rank-deficient least squares problem where A
is replaced by the rank-k matrix Zle u; 0 v} , where k is the number of large singular
values that are retained [16]. We take a similar approach in the truncated TLS method
by neglecting the small singular values of (A, b). Thus, we first determine the number
k of large singular values &; of (A4, b); for example, we can take k as the number of &;
larger than some user-specified threshold, or & can be determined adaptively; cf. §5.2.
Then we form a rank-k approximation to (A4, b) as

k
E u; o3 UL
i=1

Finally, we apply ALGORITHM TLS to the rank-k matrix (A, B) to compute the
minimum norm solution to this problem. We call this solution the truncated TLS

(12) (A, b)

solution, and we denote it by z;. The complete algorithm for computing the truncated
TLS solution thus becomes:

ALGorITEHM T-TLS
Before Step 2 in ALGORITHM TLS, choose a truncation parameter k
less than rank(A, b), and set 6541 = ... = dp41 = 0.

We note that in ALGORITHM T-TLS the number p can only differ from the trun-
cation parameter k if the TLS problem associated with (A, b) in (12) is nongeneric
(cf. [27, §3.4] for a definition). A more difficult situation is when the TLS problem is
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near-nongeneric, for then ||Vas||2 can become arbitrarily small. In the next section we
analyze this situation.

The truncated TLS solution z; computed by means of ALGORITHM T-TLS can
be expressed in terms of the SVD of (A, b). It follows from [30, Theorem 2.2] that
Z satisfies the equation

(ATA =V X2V & = ATh — Vi, X2V
where ¥y = diag(Gr41, - - -, Tnt1)-

3. Near-Nongeneric TLS Problems. The issue of a small ||Va2]]2 has not
been analyzed in the literature, except for the case when ||Vas||2 = 0. Since the size
of ||Vazl|2 plays such an important role in TLS problems—it is a measure of distance
to the nearest nongeneric problem [5]—we will analyze it carefully here.

If ||Vaz2|l2 = O then the truncated TLS solution cannot be computed from (9).
However, from [27, Theorem 3.22], ||Va2||2 = 0 implies that b is orthogonal to

Span{ak-i-l: B Ian+1} = Span{“k: B un} .

This means that the truncated SVD solutions x; and z;_1 of (3) are identical. More-
over, Step 2 of ALGORITHM T-TLS ensures that one merely chooses a lower-rank
approximation, namely, » ¢_, u;;v] , where p < k, and Step 3 effectively derives a
T-TLS solution Z, from span{vp41,...,0x}. Then Z, is the minimum norm solution
to Ap xr = Bp, where

(Ap, bp) = (A, b) (I — (Wp, Vkg1, - - -y V1) (Wp, U1y - - -5 Ung1) )

wy, = (21, —=1)T (1+|z,|3)~ /2, and rank((A, , b,)) = rank(A,) = k— 1. Thus, both
truncated SVD and truncated TLS solve equidimensional problems, a point that is
elaborated in [27].

However, in general ||Vas||2 # 0, but it can be arbitrarily small. We will show that
the same relationships nearly hold in this situation, i.e., a small ||Va2||2 implies that b
is nearly orthogonal to span{ug, ..., u,} & span{ugy1, ..., Unt1}, and the following
theorem quantifies this.

THEOREM 3.1. Let (A, b) have the SVD in (6), and let v;(1:n) represent the
first n components of v;. Then fori=1,...,n+1

[(AT A= 2D ()], [ATH, lonsrl

(13) — =
i (L)l -,

and

(14) [(AAT = G21) |, = [[bll2 @ [P, -

Proof. To prove (13), the eigenequation (A, b)T (A, b) v; = 62 v; implies
(ATA—62N) vi(1in) = —ATb Upyr i

Taking norms and using the fact ||v;(1: n)||3 = 1—17,2&172», the desired result follows. To
2

prove (14) we begin with the eigenequation (A, b)(A, b)Tw; = 72 u; or, equivalently,

(AAT — G2 u; = bb u; .
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TaABLE 1
The relative differences between the TSVD solutions x and the T-TLS solutions T and the
least squares solution z*, with corresponding residuals for the 4 X 3 example.

kNl = aulla/ll2"ll2 (b~ Azglls |l2* = @xll2/llz" ]l [I(A, b) = (4, b)||F

1 9.99-1072 1.00 9.94 - 107 1.00
2 9.95-1073 1.00 9.85 - 108 1.00- 1071
3 1.35-107%7 1.00 9.95- 1013 1.00-1073

Now, bTu; = &5 Un+1,; and the desired result follows by substitution and taking norms.
This completes the proof. O

REMARK. For v,41; = 0 the results in Theorem 3.1 coincide with the results in
[27, Theorem 3.11].

A nice feature in Theorem 3.1 is the equalities in the relationships. From (13)
and (14) we see that if |U,41 | is “small” then (&;, i, v;(1: n)) nearly approximates
a singular triplet of A. Further, if ||Vas||2 is small then b is nearly orthogonal to
span{ug41,-..,Un}, and spanf{ug, ..., u,} & span{tg41,...,Un+1} provided op_q is
not too close to og. This means that the truncated SVD solution essentially lies in
a lower dimensional subspace, namely, span{v1,...,vg_1} and that the dimension of
the truncated TLS problem should be reduced to stabilize the solution; consequently,
both methods produce solutions in equidimensional subspaces. The discrete Picard
condition ensures that such a deflation does not alter the truncated SVD solution
drastically.

Thus, throughout the rest of this paper we shall assume that ||Vas|2 is not too
“small” since we can always decrease k to satisfy this assumption.

One example of a situation that leads to a near-nongeneric TLS problem is a
highly incompatible problem Az = b. We can illustrate this by the following small
example. Let

0 1073

L0 1073
01 0 10-° _
(15) A=1o 0 o | b=|ws] U= 102
00 0 1 10

The exact LS solution is * = (1073, 10;4, 1075)T and the system satisfies the discrete
Picard condition. The bottom row of V in the SVD of (A, b) is

(Va1 Vao) = (.7028, .7069, —107°, 107 ') |

and the small elements show that the TLS problem is nearly nongeneric. Table 1 shows
the relative differences between the least squares solution z* and the solutions z; and
zg for k = 1,2,3. The truncated SVD solutions z are all regularized approximations
to *. The truncated TLS solutions Zy give much smaller residuals but are in no sense
approximations to z*.

We remark that such highly incompatible problems are not likely to occur in prac-
tice, but the example still illustrates the difficulties associated with a near-nongeneric
problem.

4. Regularizing Properties of the Truncated TLS Solution. In this sec-
tion we take a closer look at the truncated TLS solution Z; and show that it is a
reqularized solution.



Fierro and Bunch [5, §3] showed that

[l = 2xlla < O((@r41/0%)*) V1 + [lzel* V1 + [l2? -

Hence, if there is a well-defined gap between the large and small singular values of
A, and if ||Z]|2 is not too large relative to ||zg||2, then the truncated TLS and the
truncated SVD solutions are guaranteed to be similar and Zj is a regularized solution.

Our present analysis differs from the analysis by Fierro and Bunch because we do
not assume a gap in the singular value spectrum. We stress that we still assume that
the TLS problem associated with Az = b is not near-nongeneric—otherwise ||Vaz||2
can be very small and |[|Zg||2 therefore very large; cf. (10).

We start with an important theorem which relates the truncated TLS solution zg
to the SVD of A—and not to the SVD of (A, b) as is common in the literature.

THEOREM 4.1. Let (2) be the SVD of the coefficient matriz A and (6) be the
SVD of (A, b), and suppose that the nonzero singular values of A are distinct. Write
the truncated TLS solution zj in the form

(15 =y 0
LTk = i vi
k ' o

where f; are the filter factors for truncated TLS. Then the filter factors are given by

n+1 {)2+1' 0_2
(17) fi= > G|t . i=l.n.
J

s [Veall \ o

(3

If 6; = 0; for some j then the corresponding term does not contribute to f;.

Proof. The theorem is proved by considering the updating of the SVD of A when
b is appended. It is shown in [1, §4.2] that the columns v; of V for which Un41,; are
nonzero are given by

vj = w;/||wyll2

where

w; = 7

; <v (=2 - a?f)—leTb) _ (zz; 2l )

We see from (9) that these are the only columns that contribute to the solution.
Moreover, it is proved in [27, Theorem 3.11] that v,41; = 0 & ¢; = 05. Eq. (17)
then follows immediately by inserting the above expressions into (9). O

REMARK. If K = n or 041 = -+ = 0p41, then (17) reduces to f; = 0?/(0? —
72.1), consistent with [27, Theorem 2.7].

We shall now give a further characterization of the filter factors for truncated
TLS and thus show that Z; is indeed a regularized solution. Because of step 2 in
ALGORITHM TLS, we can assume without loss of generality that ox # Fry1.

THEOREM 4.2. Assume that o # 0r+1. Then the first k filter factors f; form a
monotonically increasing sequence and satisfy

~2
(18) 0< fim1< o4 =1k



while the last n — k filter factors satisfy

— -2 o ,
(19) OSfZSHV22H2 22 t=k+1,...,n.
k

_O-i

Proof. To prove (18) we have for i =1,... k

n+1 72 ) n+1 72 ) =2 n+1 72 =2

fi = Z n+l,j + Z n+l,j J =1+ Z Un41,j J
i = |2 - 12 \o2—52 ) o2 — 52
4 J 4 J

jeren Vel 5 (Ve s Vel

It follows from the interlacing inequalities for the singular values of A and (4, b)
that o; > 041 for ¢ = 1,..., k. Hence, with the assumption op # &x41, the second
term in the above equation for f; is positive and we have proved the left inequality
in (18). The right inequality follows from the facts that Z;Hkl_*_l 7n+1 J= HVQQH; and
2/(o’ —0')<o'k+1/( 6',%+1)forj:k—|—1,...,n+l.
The proof for (19) is based on the secular equations associated with downdating

the SVD of (A4, b) when b is deleted [1, §5]:

(o
Z 0_2 — 0_2 0 3 3 3 , N
j=1 7
From the relation U7 (A, b) = V7 it follows immediately that 'aJTb = 0jUpy1,; for
j=1,...,n+ 1. Hence, the secular equations become
n+1 =2
=2 i _ C
1—Z’UH+1JW—O, 2_1,...,71.
j=1 J 2
By means of the relation 77/(67 — 07) = 1+ 07/(3; — 07), and using the fact that
'6721+1,j sum to one, we can rewrite the secular equatlons as
n+1 2
2 0 _ .
' un_*_mﬁ_o, t=1,...,n.
j=1 J ¢

Using this relation and Eq. (17) for the filter factors, we have fori = k+1,...,n

= —2n+1 O"2 k 0'.2
o Wl s (57 ) -1l Nt (%)
J

i=1 i j=1 i
P o?
— vl 52 '
- Y ()
j=1 J i
Then the interlacing inequalities for singular values and the assumption op # Fry1
eIll)su?e that f; is positive. Finally, using the relation Z?:l 17721+1,j = HVanz <1, we
obtaln

X

o?
< HV22H2 52— o2 Z Unt1,j S |V22H2 5'k_0'z'2 ‘

j=1
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Thus, we have proved (19). O
COROLLARY 4.3. The norms of zy and zj satisfy

(20) IEellz > lzxll.,  k=1,....n.

Proof. Equation (20) is an immediate consequence of the fact that f; > 1 for
t=1,...,kand f; > 0 fori =%+ 1,...,n. The corresponding filter factors for
are 1 and 0. O

From Theorem 4.2 we obtain the following expression for the first & filter factors

Thy1 Thy1
1<fi<i+ 25 +o< - ) Coi=1,..k,

showing that the larger the ratio between o; and 641, the closer f; is to 1. Similarly,
for the last n — k filter factors we obtain

2 2

0< fi < |IVaallz* 25 (HO(Z—@)) ,i=k+1...n,

k k
showing that the smaller the ratio between o; and o, the closer f; is to 0. Hence,
Theorem 4.2 guarantees that the first £ filter factors will be close to one and that
the last n — & filter factors will be small, even in the case where there is no gap in the
singular value spectrum, provided that ||Va2||2 is not very small.

We conclude that if the discrete Picard condition is satisfied, then the truncated
TLS solution zj is a regularized solution because the contributions to zy correspond-
ing to all the small o; are filtered out while the remaining, significant contributions
are retained in Zx. (For more details why such a solution is a regularized solution we
refer to the analysis of the truncated SVD solution in [16].) Moreover, we see that
the truncation parameter k plays the role of a regularization parameter.

The difference between the truncated TLS solution and the truncated SVD solu-
tion is due to the fact that the truncated TLS technique takes into account the errors
in the coefficient matrix A. If k = n, then the difference ||xy — Zg||2 is sometimes
quite small, in particular when the errors in A and b are small [24]. When k < n, the
examples in [5, 6], as well as our examples in §7, illustrate that zx and zx can be very
different.

5. A Bidiagonalization Algorithm for Large-Scale Problems. When the
dimensions of A are not too large, one can compute the complete SVD of (A4, b) and
then experiment with various choices of k. This is particularly useful if no a priori
estimate of a suitable & is known.

When the dimensions of A become large, this approach becomes prohibitive be-
cause the SVD algorithm is of complexity O(mn?). We shall therefore describe an
alternative technique that is much more suited for large-scale problems whenever
k < n, which is indeed the case in most discrete ill-posed problems.

A fairly straight-forward approach would be to choose a sufficiently large k.5 and
compute a partial SVD of (A, b), namely, the first kmax singular triplets (&, 4, v;) of
(A, b). Then zj can be computed by the alternative formula

(21) Ty = (VS)T‘?;; :

The partial SVD can be computed by a technique similar to the PSVD algorithm
described in [28] for computing the last few singular triplets. However, for large
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sparse or structured matrices (e.g., Toeplitz matrices, which arise in connection with
discretization of many convolution problems) the partial-SVD approach is prohibitive
because this algorithm initially performs a reduction of (A, b) to bidiagonal form,
and the sparsity or structure of the matrix is lost in the first step of this reduction.

5.1. The Lanczos T-TLS Algorithm. The above considerations lead us to
consider iterative methods, based on Lanczos bidiagonalization, that do not alter the
matrix A. It is well know that Lanczos bidiagonalization can be used to compute good
approximations to the singular triplets associated with the largest singular values of
a matrix, see, e.g., [9, 21]. We refer to the original papers and omit a discussion of
the Lanczos bidiagonalization algorithm here. Again, we could choose some integer
kmax and perform kpyax Lanczos iterations applied to the compound matrix (A4, b),
after which we could compute approximate truncated TLS solutions for various k less
than kmax by means of Eq. (21).

Here we propose an alternative technique based on Lanczos bidiagonalization of
the matrix A rather than (A4, b). The key to our algorithm is to recognize that after
k iterations, the Lanczos process with starting vector u; = b/||b||2 has produced two
sets of vectors Uy = (u1,...,ug41) and Vi = (v1,...,vx) and a (k+ 1) x k bidiagonal
matrix By such that

AVk = UkBk and ﬁlul =b.

Thus, after k& Lanczos iterations we can project the TLS problem onto the subspaces
spanned by Ug and Vi, in the hope that for large enough k£ we have captured all the
large singular values of A that are needed for computing a useful regularized solution.
The projected TLS problem is equivalent to

UF((A,8) = (Ag , b)) (Vok (1))

min subject to UszZlk ey = UkTIA)k ,
F
or
(22) min ||(Bg , fre1) — (Bk , €x)||lF subject to Bry=¢ép .
where e; = (1,0,...,0)T, and By, and é are generally full. Our algorithm reduces to

the LSQR algorithm [22] if we require By, = By in each step.

In each Lanczos step we can now compute an approximate truncated TLS solu-
tion Z; by applying ALGORITHM TLS to the small-size problem in (22). Hence, we
compute the SVD of the matrix (B , f1e1),

|
— <
= (k) = (k)

O OWEION Sk (Vi Vi, VT ok

(Be, ey =0 87 (V)@ —(W AR
Vo Uy

and the standard TLS solution g to (22) is
_ = (k) (k) !
e = V1o (1’(22)) :
Then the approximate TLS solution zj is given by

- _ = (k) (k) 71
(23) Tp=—Vegpr=—Vi V(12) (U(zé)) .
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For convenience, we can permute the vector $e; in front of By such that, in each
step, we merely need to compute the last singular triplet of the (k+1) x (k+1) upper
bidiagonal matrix (B1e1, Bx). This can be done in O(k?) operations by means of the
PSVD algorithm [28].

We remark that it is easy to augment the above algorithm to include the compu-
tations of the LSQR, algorithm [22]. Approximate TSVD solutions can be computed
together with the approximate T-TLS solutions with little extra overhead.

5.2. Stopping Criterion. During the iterations it is helpful to display the
norms of the solution vector Z; and the corresponding TLS residual matrix. Both
norms are easy to express in terms of the SVD of (B, Bie1), and require very little
computational effort.

THEOREM b.1. The norms of the solution and the residual matriz in the Lanczos
T-TLS algorithm satisfy

(24) el = 1/ (5) 7 -1

and

(25) AL B) = (A, Bi)llE = 1A, B)IIE — (Be Bren)lli + (3107

where 3,(6’:31 is the smallest singular value of (By , f1e1). Moreover, ||Ek||2 is a non-

decreasing function of k and the residual norm in (25) is a nonincreasing function
of k.

Proof. Equations (24) and (25) follow immediately from the SVD of (By , fB1e1).
That the residual norm cannot increase is an immediate consequence of the interlacing
inequalities for the singular values of (By, fie1) and (Bgy1, fre1). To prove that

[|Zx||2 cannot decrease with k& we must show that |5g§)| > |§(2A;+1)| for all k. This is
proved in the Appendix. 0O

We remark that for the LSQR algorithm, the norm of the residual vector is mono-
tonically decreasing, since we minimize over an expanding subspace [22]. Further,
since LSQR is mathematically equivalent to applying the conjugate gradient method
to the normal equations, the fact that the solution norm is monotonically increasing
follows from Eq. (6:3) of Hestenes and Stiefel [20].

Notice that (25) is only guaranteed to hold in exact arithmetic, while it fails to
hold in inexact arithmetic when spurious singular values of (A, b) start to appear in
(Bk , B1e1). The cure is either to use selective reorthogonalization or to identify the
spurious singular values; see the discussion in [3, Chapter 2].

The Lanczos iteration gives us a sequence of truncated TLS solutions {Z}.> We
need a criterion for choosing a good stopping index k. If explicit knowledge about
the errors in A and b is available, then this information can be used to stop when the
norm of the TLS residual matrix equals its expected value—similar to the so-called
discrepancy principle for LS problems, see [13, §5.3]. Here, we are concerned with
the situation where no knowledge about the noise in A and b is available, so that this
information, in a sense, has to be extracted from the given data.

A conceptually simple stopping criteria is to stop when the norm of the residual
vector—in our case, ||A Z; — b||a—is considered small, e.g., when it levels off at some

L At each iteration we could also truncate at singular value k < k, producing a set of T-TLS
solutions {ik k} for k=1,2,...and k = 1,2, ..., k, but we do not pursue this idea here.
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value reflecting the errors. This is a quite useful stopping rule for well-conditioned
least squares problems, because the solution vector for such problems changes slowly
from step to step, and hence the precise choice of & is not so important. On the other
hand, for discrete ill-posed problems this criterion is more likely to fail, because the
solution vector for such problems may change dramatically in each iteration step as
the residual norm approaches its stalling phase. Nevertheless, we have actually had
some success with this stopping rule, see §7.

Another popular method for choosing the regularization parameter is the method
of Generalized Cross-Validation due to Wahba [8]. Currently, we do not have any
experience with this method.

A third possible stopping criterion can be based on the L-curve criterion studied
recently in [17, 19]. The idea in this method is to plot in log-log scale the solution
norm versus the residual norm, in our case ||Zg||2 versus ||(A4, b) — (Ak , Bk)||F, and
choose as the optimal k the truncation parameter at which this curve has an L-shaped
corner. Essentially, the corner is defined by locating the point with greatest curvature
in the log-log scale. For more information on this technique, see [19].

Of course, the L-curve’s corner cannot be identified without going a few steps too
far; but we believe that any good stopping criterion for discrete ill-posed problems
(including Generalized Cross-Validation) will suffer from this mild inconvenience.

6. Regularization in General Form. Theorems 4.1 and 4.2 show that the
T-TLS solution Zy is a regularized solution whose main contributions come from the
first k right singular vectors v;. It is common experience that these vectors are not
always the best basis vectors for a regularized solution. This is the reason for using
a matrix L # I in Tikhonov regularization (4), commonly called regularization in
general form. Then it is convenient to introduce the quotient SVD (QSVD)? of the
matrix pair (A4, L):

(26) A = U diag(o;) W1 L =V diag(8) W1,

for then the regularized solution is expanded in terms of the columns w; of W, and the
main contributions come from the vectors w; associated with the largest generalized
singular values «1/;. See, for example, [14], [13, §4] or [18, §6] for details.

In connection with our T-TLS algorithms it may also be convenient to implicitly
use regularization in general form with L # /. This is done in the same way as
general-form regularization is treated in connection with Tikhonov regularization and
other methods. First transform the problem involving A, L and b into a standard-
form problem with matrix Ag and right-hand side bgs. Then apply T-TLS or Lanczos
T-TLS to the standard-form problem to obtain a regularized solution zs. Finally,
transform z¢ back to the general-form setting.

There are several ways to transform a problem into standard form. The following
transformation originally due to Eldén [4] is well suited. Let

Lly = W diag(57) V"

denote the A-weighted generalized inverse of L; cf. [4] for a formal definition. Then
Agt and bgr are given by

(27) Ag = ALY = Udiag(ei/8) VT, bg=b— Az,

2 The QSVD is also commonly referred to as the generalized SVD (GSVD).

12



where xg is the component of the solution in the null space of L (this vector can easily
be computed a priori). Moreover, the transformation back to the general-form setting
essentially requires a multiplication with LL:

(28) z=Lhzg+zo.

When the T-TLS algorithm is applied to the standard-form problem, then

Isfk—zfsfz

i sf
- a;if

v

v; ,

where £ is the row rank of L, and fi; are the filter factors associated with the
application of T-TLS to (Ast, bst). Moreover, we get

uf
T = E fsfz—wz—i—l‘o-

Z

When L is well conditioned (which is the usual case in regularization problems) then
the generalized singular values of (A4, L) decay gradually to zero in the same manner
as the singular values of A. Some insight into this phenomenon can be found in [14],
and as a consequence the filter factors fir; essentially filter out the contributions
to zy corresponding to the small generalized singular values. Hence, z is indeed a
general-form regularized solution.

The key to the efficiency of this method in connection with the Lanczos T-TLS
algorithm is that the matrix Ay is never formed explicitly; we only need to be able to
perform matrix-vector multiplications with A, AT LL and (LL)T. Given a basis N
for the null space of L, the latter two matrix multiplications can be done in O((n—£)n)
operations, as long as L is a banded matrix, by means of the following algorithms:

CompuTE y = Lz Computk y = (LI)Tz
-1
It 0 0 . T NT,
1.ye< I ) (l) l.e+~az—T"N'z
y L\
2. y+—y—NTy 2. (z) F<Ofn—z> x

where the (n — £) x n matrix 7' = (AN)!A is computed only once in O(mn(n — £))
operations. The work in the computation of xzy is dominated by n — £ multiplications
with A. We omit the details here and refer to the discussion of implementation details

given in [13, §4.3].

7. Numerical Examples. In this section we illustrate the use of the T-TLS
and Lanczos T-TLS algorithms for solving discrete ill-posed problems. We compare
the solutions computed by these two methods with the solutions from three classical
methods for discrete ill-posed problems, namely, Tikhonov regularization, truncated
SVD, and LSQR. Our experiments were carried out in MATLAB using the REGULAR-
1ZATION TooLs package [18].

Our test problems were generated as follows. The matrix A is 64 x 32 and comes
from discretization of Phillips’s test problem (cf. [18, phillips]). Two right-hand sides
bl b2 were generated artificially by means of the SVD of A. The Fourier coefficients
772[»1] = uin[l] of the first satisfy
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77[11], .. .,ng] are geometrically distributed between 1 and 104

ngl], .. .,77%12] are geometrically distributed between 10* and 10716,
For the second,

77[12], .. .,77%22] are geometrically distributed between 1 and 10716

(1]

Only b has coefficients n;  that increase with 7, and from the theory in [5] we

therefore expect that TLS is superior to LS for bl only. Both systems are scaled such

that max;; |a;;| = max; |b£p]| = 1. Then we add perturbations £ and e with elements
from a Gaussian distribution with zero mean and standard deviation chosen such that
[|E|l2 = |le]|2 = €, where € is a specified constant.

In connection with the tests reported below, we made the interesting observation
that when we perturb the matrix A randomly as described above, then the singular
vectors of A are perturbed in a very systematic way. The singular vectors of the per-
turbed A are approximately equal to the corresponding unperturbed singular vector
plus a high-frequency component that clearly resembles the Gaussian noise added to
the unperturbed matrix.

An important consequence of the above perturbation of the SVD is that standard-
form regularization with L = I is not suited, because the high-frequency component
appearing in all singular vectors also appears in the regularized solutions, no matter
which regularization method is used and how the regularization parameter is chosen.
The only way to avoid the high-frequency part in the regularized solutions is to use
a different regularization matrix. We have chosen L equal to the approximate second
derivative operator, i.e., L is (n—2) x n and has rows of the form (...,0,1,-2,1,0,...).
The transformation to and from standard form was carried out as explained in §6 using
the implementations gen_form and std_form from [18].

For each combination of € and right-hand side b we generated 1000 test problems,
and each test problem was solved by means of the following regularization methods:

1. T-TLS with k =1,...,12.
Lanczos T-TLS with kyax = 12 iterations and complete reorthogonalization.
Tikhonov regularization with A in the range (1078,10?).
Truncated SVD with £k =1,...,12.
. The LSQR algorithm with kmax = 12 iterations.
First, we want to compare the optimal accuracy that can be attained by any of the
above methods. To do this, for each method we define the optimal regularized solution
z°P! as the one closest to the exact solution. E.g., for T-TLS,

UV»-BOJ[\D

Hi‘Opt _ xexactHz S ”]}k _ 'IexaCtHZ ’ k=1

12 .

gy

In this way, we can investigate in which circumstances the TLS approach is capable
of outperforming the LS approach.

Test 1. This test was carried out with a relatively “large” noise level ¢ = 5-1072
and with the first right-hand side b*] for which the first 8 coefficients UZU] increase.
Figure 1 shows histograms of the relative errors ||z°P" — 2%t ||, /||z¢*2<*||, for all five
regularization methods. It is evident that for this test problem, both the T-TLS and
the Lanczos T-TLS algorithms are able to produce more accurate solutions than the
three classical regularization methods. Moreover, we see that T-TLS and Lanczos
T-TLS produce almost the same histograms—and the same is true for the other three
methods.

Test 2. Our second test problem is identical to the first problem, except that the
noise level is now smaller, e = 1073, It is well known that for small noise levels, we
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should not expect much difference in the TLS and LS solutions. The results in Fig. 2
confirm this: even though the right-hand is that same as in Test 1, the histograms
for all five methods are now almost identical. Notice, in particular, the resemblance
of T-TLS, Tikhonov and TSVD, and the resemblance of Lanczos T-TLS and LSQR.

Test 3. Our final test problem uses the second right-hand side 5[] (which satisfies
the discrete Picard condition for all coefficients) and the same “large” noise level as
in Test 1. All five histograms (not shown here) are almost identical, illustrating that
for this class of problems, we cannot expect the TLS approach to outperform the LS
approach.

These examples illustrate that the TLS technique can indeed produce results
that are superior to those computed by the classical regularization methods, when
the noise is large and when the discrete Picard condition is violated. Moreover, we
have seen that the iterative Lanczos T-TLS algorithm can produce results which are
very similar to those obtained by the much more expensive T-TLS algorithm that
requires a (partial) SVD computation.

We have also illustrated that when the discrete Picard condition is satisfied, or
when the errors are “small”, then there is no advantage in using the TLS approach
over the classical methods.

Next, we briefly report on our experience with choosing a good regularization
parameter k for T-TLS and Lanczos T-TLS.

For test problem 1, we found that plots of the solution norm versus the norm of
the TLS residual matrix or the TLS residual vector do not have any L-shape, as is
required in the L-curve criterion. Instead, we obtained good results when stopping
the iteration process when the norm of the residual vector, ||A Zg — b||2, levels off. In
fact, in our experiments ||A Zx — b||2 always reached a minimum for some small value
of k, after which it increased slowly again, and this minimum was used to choose k.
When we compare the optimal errors with the errors obtained by using this simple
parameter choice rule, we obtain essentially the same results and histograms (not
shown here).

For test problems 2 and 3, we find that the L-curve criterion works well when we
plot the norm of the solution versus the norm of the TLS residual matrix. We refer
to [17, 19] for numerical examples. Further research in this area is required.

A. Appendix. In this appendix we complete the proof of Theorem 5.1 by prov-
ing that |5g‘;)| > |1:)g;+1)| for all k > 0.3 We introduce the following notation

Ty = (Brer, Be)T(Bier, Br) , sk =000, sep1 = aeh

and the first column of By is denoted (a1, 82,0, .. .)T. Then T} is a tridiagonal sym-

2 2
metric positive definite (k+1) X (k+1) matrix with eigenvalues (5'(1[“)) e 5'5;21) )
Due to the Lanczos process all elements of By are nonnegative, and it follows that T}
is an oscillatory matrix [7, Chapter XIII, §9] and that the eigenvector w associated

with the smallest eigenvalue s7 has k sign changes [7, p. 105], i.e.,
sign(wiy1) = —sign(w;) , i=1,...,k.
. . . .. . _(k
3 This result can also be established as a consequence of (3.4.8) in Szegd [23], by noting that |’Ug2) |

and |{7g};+1)| are the square roots of the Christoffel numbers Ai; and A; p41 [11], but we prefer a
direct matrix algebra proof.
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Moreover, we can always choose w such that w; > 0. The following two lemmas lead
to the desired result.

LEMMA A.1. Let 7; denote the diagonal elements of T),. Then

(29) s2 <minn for k>0.

Proof. We know that s? < 27T}y z for any vector z of length 1. Choosing z as the
1th unit vector yields this familiar result. 0O
LEMMA A.2. Fiz k and let w and z be eigenvectors such that

Thw = spw and Thy12 = sﬁ_Hz
with ||w||z2 = ||z|]2 =1, w1 > 0 and z; > 0. Then

(30) w; — 21 ZO

Proof. Our proof strategy will be to show that if we normalize so that w; = z;,
then |wi41| < |zi41|. It then follows that renormalization to ||w||z = ||z]|2 = 1 yields
(30).

Let w1 = z; = 1. Denote the nonzeros in the ith row of Ty by (vi, 7, vi+1). Then
the 1st row yields the relations

_ 2,
Wy + Y2wy = Spwi,

_ 2
TIZ1 + 7222 = Spi141,

SO

8%—’7’1

Y2
2
8k+1 — T
)
Y2

w2 = )
z9 =

S0 zg < ws < 0. A similar computation for the 2nd row yields

(r2 = si)(-ws) = 7

w3 == )
73
(72 = s341)(—22) — 72
zZ3 == 3
73

and therefore 0 < ws < z3.
There is a stronger monotonicity relation:

BB_ws _ L ey 2 a2
Z2 wy ’73{ (T2 8k+1) 22—1_(T2 Sk)+w2}
1 5 5 <1 1)}
= —9I(s — s;) + —_— = —
s {( k+1 k) 72 w0y 2
< 0,

since both quantities in parentheses are negative.
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This is the setup for an induction argument. Assume, for convenience, that we
renormalize so that w; = z; = 1 (i < k— 1), and assume that the renormalized vector
satisfies z;41 < w;y1 < 0. Then the same argument, using the (i + 1)st row of the
matrix yields 0 < wiya < z;42 and

Zi42 _ Wi42 <0,
Zi41 Wi41
completing the induction. 0O
The result about |5(2};)| > |1:)(2’;+1)| now follows immediately by recognizing that

2 2
the eigenvectors associated with s7 = (E'(R) ) and s}, = (3(k+1)) are

k+1 k42
0 e
w = = (k) and zZ = = (k+1) s
12 12
. . . = (k) = (k+1)
i.e., cyclic permutations of the last column of V" and V from §5.1. Thus,
158 = (o8 = wy — 2 > 0 for all k > 0.
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F1Gg. 1. Test 1: error level € = 5- 1072 and right-hand side plil, Histograms for the optimal
relative errors of 1000 test problems solved by five different regularization methods.
T-TLS and Lanczos T-TLS are superior to the three classical methods.
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F1Gg. 2. Test 2: error level € = 10~° and right-hand side pl1l. Histograms for the optimal
relative errors of 1000 test problems solved by five different regularization methods. All five methods
give essentially the same results.
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