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SUMMARY

In multivariate calibration the relationship between a g-variate response vector Y and
p explanatory variables X are estimated from training data in order to predict an unknown
X, denoted by £ from further observed responses. When q > p both the profile likelihood
for £ and Bayesian inference for £ depend on a prediction inconsistency diagnostic which
highlights those response vectors used for prediction which are internally inconsistent
in the prediction of £ When several further response vectors together display systematic
anomalies one is led to questioning the estimated model. The information in prediction
data about changes in parameters is investigated under various assumptions. The results
indicate systematic anomalies in prediction data may be detected in a variety of ways,
but corrected only under strong assumptions so that recalibration might be needed.

Some key words: Likelihood ratio test; Profile likelihood; Recalibration; Unsupervized learning.

1. INTRODUCTION

Multivariate calibration uses an observational training data set Xt, Yt ( i= 1 , . . . , n)
to construct a relationship between the qx\ vector Y and the px 1 vector X. These
training data may have X-values fixed in advance as in a controlled designed experiment,
the 'controlled' calibration case, or the X-values may be as generated by a random sample
of specimens, the so-called 'random' or 'natural' calibration case. Inference methods for
a future X-value, denoted by £ corresponding to an observed response vector Y, denoted
by Z to avoid confusion with the calibration data, should depend on whether the training
data are controlled or natural. Controlled calibration lacks useful information on the
likely distribution of £ whereas random calibration may not estimate the relationship
between Y and X in the most precise way. Informally, an amalgamation of the two
methods is to be preferred and the profile likelihood for this is discussed in § 2.

The relationship between Y and X may be linear or nonlinear and the appropriate
choice should be guided by prior knowledge and graphical analysis of the calibration
data. For simplicity we treat the multivariate linear model under which

Y=\a' + XB + E, Z = a + B'£ + e, (1-1)

where Y, X, Z are observed, a, B and £ are q x 1, p x q and p x l unknown parameters,
1 an n x 1 vector of ones and with E = ( e , , . . . , £„)' with e , , . . . , en mutually independent
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q x 1 vectors,

£(«-,) = £(e) = 0,

and a common unknown covariance matrix F for each e, and for e. In addition,
multivariate normality is assumed.

Brown (1982) developed both Bayes and sampling theory inference procedures for
both controlled and random calibration. For controlled calibration, Brown & Sundberg
(1987) derived the profile likelihood of £ that is the likelihood maximized over all
parameters except £, as proportional to

?(f) + (Z - a - B'f ) 'S; ' (Z - a - fl'£)}]i(n+1). (1-2)

A formula analogous to (1-2) also holds when (1-1) is linear in the parameters but
nonlinear in certain X variables, with £ correspondingly constrained. Here /5=1 corre-
sponds to an extension of (11) to / replicates of Z each at the same value of £ and
having q x 1 mean Z,

where

and S+ is the pooled residual sum of products from both calibration and, when / > 1,
prediction experiments. The estimates a, B are standard maximum likelihood estimates
from (11) without prediction data Z, but the natural generalized least-squares estimator

with f = S+/(n + / - I ) , does not in general maximize (1-2) and is thus not the maximum
likelihood estimator of £ except when p = q or as n -»<x> so that B -» B, T -» T. The maximum
likelihood estimator, a nonlinear estimator given explicitly by Brown & Sundberg (1987),
is usually however close to £ even when n is small, except when the prediction incon-
sistency diagnostic

it(Z-a-0'i) (1-3)
is too large. When / = 1 notationally Z and R revert to Z and R. Such a large value of
R attests to the internal inconsistency of the q components of Z in inference about the
p components of £ (q>p). It widens likelihood-based confidence intervals (Brown &
Sundberg, 1987) in harmony with the Bayes approach (Brown, 1982) but in natural
discord with the anomalous behaviour of the sampling theory intervals elucidated by
Brown (1982) which perversely narrow with increasing R. Oman (1988) adopts an
approach to confidence regions which removes the influence of R altogether in order to
correct the behaviour of the sampling theory approach to controlled calibration (Oman
& Wax, 1984).

The statistic R is central to diagnostic checking, whether or not it influences confidence
intervals and point estimators, and is discussed further in § 3.

In routine use typically only / = 1 replicates are available at each £ and after a period
of use Z , , . . . , Z, will have been observed corresponding to different and unknown
fi , . . . , £ , with each Z, satisfying equation (11) and errors being independent for
j = l,...,t.

Taken individually each Z ; can be examined for consistency through (1-3). Taken
collectively and assuming the distribution of £, (_/ = ! , . . . , t) is known the Zj provide
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information for investigating whether the parameters of model (1*1) have changed
appreciably since calibration, as discussed in § 5. If on the other hand the Zj are consistent
with the model as estimated from calibration data, they provide information about the
random distribution of future £,, especially lacking in controlled calibration; see also § 2.

2. PROFILE LIKELIHOOD WITH SOME RANDOM X

Suppose (V,, X,), for i" = 1 , . . . , n, are calibration data from model (1-1) with controlled
X's, but that there are also separately a random sample of X-values, />xl vectors
X*,..., X* from Np(m, F), where both the mean vector, m, and the covariance matrix
F are unknown. Then if £, which is p x 1, can be assumed to be also generated by the
same mechanism, the profile likelihood for £ solely from this marginal set of t X-values
is, following Brown & Sundberg (1987), proportional to

where

G* =

Now (2-1) multiplied by (1-2) gives the overall profile likelihood for f when Y, are
observed for fixed X, (i = 1 , . . . ,«) and random X* (j = 1 , . . . , t) are available. More
interestingly, if X*,..., X* is in fact a subset of the calibration X* = Xh this product
of (1-2) and (21) is still the overall profile likelihood. We are able to treat the conditional
distribution of Y given X and the marginal distribution of X quite separately since X
is 5-ancillary for the parameters of the conditional distribution. If now ( = n so that we
are at the other extreme of total random calibration then the product of (1-2) and (2-1),
the profile likelihood, is

which when / = 1 specializes to

{aKt) + (Z-a- B'€)'S-\Z -a- B'£)ri(n+1). (2-2)

A little manipulation following Brown (1982, § 2.4) shows that this is

where \a\2
H denotes a'Ha, H = BS~1B' and c is a constant. Here £ is the maximum

likelihood estimator obtained from the regression of X on Y. Also £ is the best linear
predictor of a random £ from the same distribution as X neglecting estimation errors in
T, B, a. Thus (2-2) is indeed the profile likelihood from the regression of X on Y,
conforming with the natural approach to pure random calibration which provides the
joint distribution of Y and X for prediction of a future X and Y. This development
parallels and to some extent mimics the Bayesian analysis of § 3 of Brown (1982).

Finally, in passing, we note another source of information touched on in the introduc-
tion. In routine use of the calibrated instrument, under controlled or random calibration
or a mixture of the two, Z , , . . . , Z , from model (11) are provided corresponding to
unknown £ , , . . . , £,. Assuming these £ , , . . . , £, form a random sample from NP(m, F),
marginally Zj are distributed independently as Nq(a + B'm, B'FB + T) for j = 1 , . . . , / .
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Together with the data from (1-1) this provides further updating of the profile likelihood
of £. A sampling approach to utilization of this extra information for p = q = 1 under
controlled calibration is given by Williams (1969) and could also be extended to <? 3=/> s= 1.
In controlled calibration however this utilization of future responses assumes a distribu-
tion of the future unknown £ This might be regarded as imposing too strong an assumption
unless there is independent corroborating evidence available say from partial random
calibration. Or else it is a poor substitute for directly observed random X-values, as we
see later in § 6. The situation is akin to unsupervized learning as discussed, for example,
by Makov (1980).

3. PREDICTION DIAGNOSTICS

In the introduction in (1-3) we identified

R = \Z-a-B'i\2
r,, (3-1)

the residual sum of products from prediction of the ^-vector Z weighted by the inverse
of the least-squares error matrix f, as a feature which determines the shape of the profile
likelihood.

For this section, assume that the parameters a, B and F are precisely estimated by a,
B and f so that they may be regarded as known. Under this assumption £ is the unknown
parameter and under normality it follows from least-squares theory that R is distributed
as chi-squared ^vith (q-p) degrees of freedom.

Let Z = a + B'l, Z = a + B'£ be the fitted values of Z corresponding respectively to | ,
I of § 2.

Now, it may be seen that

E{(Z - Z)(Z - Z)'} = f(f + B'FB)f = ®~\

where this defines 0 and F was defined at the end of the previous section; see also Naes
& Martens (1987, §3). Defining

Naes & Martens (1987) show that

RB = R + RX, (3-2)

where Rx =\Z — Z\%. Under normality Rx and R are independent chi-squareds with p
and (q-p) degrees of freedom. For further discussion, see Naes (1985, § 2; 1986). Thus
in addition to the inconsistency diagnostic, R, he pinpoints Rx as a diagnostic useful in
identifying outliers in X, that is £ space. A large value of Rx would suggest that particular
care should be exercized in using £, the natural case predictor, since it shrinks towards
x the mean of the calibration experiment. In practice if R is large one would probably
wish to see whether particular individual components of F~'(Z — a — B'£) are large. This
would be especially useful if q » p.

Both diagnostics, R and Rx, assume the calibration model to be true. In practice, after
calibration, many different samples are analysed corresponding to different and unknown
£ values. Consistent repeated departures from expected values lead one to question the
model rather than to identifying outliers.

However whilst one is able to detect changes from the calibration model, correction
of the regression model is not possible without further strong assumptions, since the £
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are unknown. We first give a negative result to the effect that no useful inferences to
correct for possible changes in the regression parameters can be made without the
assumption of a distribution for £ We then proceed in § 5 to tests that utilize such a
distribution.

4. INFERENCE ABOUT REGRESSION CHANGE: NO ASSUMPTION ON £'S

Here we study whether future observations Z,, Z 2 , . . . can be used to detect and correct
for deviations between the estimated matrix B of regression coefficients, regarded as
known, and the true matrix B of the prediction phase. Reasons behind such deviations
could be estimation 'errors' in B and a change in true relationship since calibration. For
simplicity a is taken to be zero. We make no assumption about £,, £2. • • here; they could
be regarded as arbitrary parameters. We show a result of the following kind: without
assumptions on £ only irrelevant deviations between B and the true B can be detected
and corrected for from Z data.

Hence the best we can do from Z data is to let the detection of an inconsistency
between B and B motivate a recalibration.

If q = p, not even irrelevant deviations can be detected. There is a one-to-one correspon-
dence between E(Z) and £ through E(Z) = B'g, so nothing can be inferred about B
from Z without assumptions on £ If q > p, however, Z has more components than needed
for the estimation of £, so there is some information about B. Write

for K = B'(Bt~lB')~]BT~\ Here Z(1) and Z(2) vary in subspaces L(1), L(2) of dimensions
p and q—p respectively. The matrix K projects Z in a ^-dimensional Euclidean space
onto L(1) in direction L(2), and vice versa for I — K, with L(1)©L(2) = Rq. This may be
implemented by a singular value decomposition. Also, Z(1) and Z(2) are uncorrelated.
Now Z(1) = B'g, with expected value

, (4-1)

which is a one-to-one function of £ whereas Z(2) appears in the inconsistency diagnostic
R of (3-1) and satisfies

when B = B.
Based on Z data only, Z , , . . . , Z, say, a test of the hypothesis B = B, T = t, may be

constructed from the Z(2) values, e.g. with test statistic

R = tR,, (4-2)
I • • 1

where the /?,'s are the individual values of the inconsistency diagnostic. Naes (1985) and
Naes & Martens (1987) used the i?, for detection of outliers in Z-space without assump-
tions on £ This is the natural interpretation of a large value for an individual Z. A
significantly large value of 7?. not explained by gross errors in one or a few individual
Z vectors must be explained by a deviation between B and B, or by an increased true
F, as compared with f.

Let us assume F = f and try to correct B. Write

E(£) = M£. (4-3)
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The relationship between M and K is seen from (41), KB' = B'M. The expected value
of Z(2) may be written

We assume M nonsingular. In particular this condition is satisfied in the typical case
when B is little different from B, that is M — I.

The linear relationship between the expected values of Z(2) and £ makes it possible to
estimate

C = (B'- B'M)M~l = B'M"1 - B'.

Let us even assume C known. Then B' = B'+C = B'M~l would be a partially corrected
alternative to B, that could replace the latter in £ to form a new estimator f. However,
it is easily seen that E( |) = M£ = £(£), so the attempted correction does not reduce the
bias. In this sense the correction is irrelevant for estimation of £

5. INFERENCE ABOUT REGRESSION CHANGE: £ DISTRIBUTION ASSUMED

In prediction, a change in the distribution of Z from that of Y in the calibration
sample, as measured by the prediction sample Z , , . . . , Z, could be the result of (a) a
change in a, B, (b) a change in F and (c) a change in the distribution of £ Section 4
showed that correction for (a) is not possible without further assumptions. Here we
assume that (b) and (c) do not occur and that furthermore the distribution of £ is known
from previous experience. Note that this implies that the calibration experiment, although
controlled, is augmented by random X data and prediction of £ could take account of
these random X as in § 2. However our interest here is in the Z distribution and not
direct prediction of £

Throughout this section we assume the parameters T, a, B known although in reality
they will be estimated from the calibration experiment, and effectively we assume F is
known. Even if the calibration experiment does not provide precise information about
a, B repeated prediction will be in terms of such values and we are interested in deviations
from them and not from some hypothesized true values. For emphasis these calibration
estimated values will be denoted a, B.

We assume that £, , . . . , £ form a p-variate normal sample with known mean m and
known p*p variance matrix F. Thus since F and F are known and unchanged throughout
this section, model (1-1) will be utilized after e, Z, a, B' have been premultiplied by F"*
and B' postmultiplied by F*, so that the prediction part of (11) reads

Z, = a + B'£ + £i (« = 1, . . . , 0, (5-D

where now e,, £, are independent q and p variate normal with identity variance matrices.
To reconstruct the untransformed notation of previous sections all subsequent formulae
must be transformed back by the substitutions

With p « q , the relationship between Z and £ involves p separate linear relationships.
In order to avoid testing for change in a, B not relevant to prediction of £ we immediately
specialize to a canonical form of the model (5-1) estimated at a = a, B = B. For a suitable
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choice of orthogonal matrices Q and P, the transformed variables ZJ = QZ,, gf = P£,
may be used to express estimated (51) in the canonical form

\l\ (5-2)

(5-3)

where Z*(x) and Z* (2) are pand (q-p) dimensional vectors respectively, a+ is a new
constant vector, 6 + = diag(/3y) is a diagonal p x p matrix with singular values of B as
diagonal elements, that is B] are the eigenvalues of BB', and e'1', e(,2) concatenated form
new independent identically distributed Nq(0,1) vectors. This orthogonal linear transfor-
mation of the q components Z is similar in spirit to the linear projection adopted in § 4.

Now the orthogonal matrix Q is a function of B and transforms the estimated model
to canonical form. If a, B change from a, B, so will both a+ and B* in (5-2), (5-3), the
latter from zero in (5-3). However, although (5-2) and (5-3) thus both provide testable
information about a, B, only (52) involves £ as used for prediction so that change in
a, B manifest in (5-3) will not effect the behaviour of £ or \ for prediction of £ Thus
our null hypothesis is (a(

+
1>,5+) = (a(

;|[
1), BJ and the alternative (a^\ BJ + (a(^, fl+).

Marginally, averaging over the unobserved £* distributed as Np(PF~*m, I), (5-2)
becomes

Zfw = ̂  + 8f, (5-4)

where fi^.= a^} + B'^PF'^m and 8* are independent identically Np(0, A+) with A* =
B'^B^^ I, and under the null hypothesis of no change a(

+
!) and Bt are completely specified

whereas under the alternative / i+ and B^ are arbitrary and B^ enters the problem through
A*-

If the null hypothesis had been a(
#° = a^ ' versus a(

+
!) # a^\ with B+ constant throughout

then this test could be accomplished through (5-4) merely by testing for a mean change
with a known constant covariance matrix for the error. A null hypothesis concerning Bt

alone is more problematic since 5* enters both ^ and A* but could be accomplished
with a likelihood ratio test procedure for example. As a consequence of both a^}, fl+

being allowed to change as is the present case, one is allowed to regard fi^ as arbitrary
under the alternative.

To conduct a likelihood ratio test we need to obtain the difference of the log likelihood
under null hypothesis and log likelihood maximized over the alternative choices of a*0,
fl+. Under the null hypothesis the log likelihood is

(5-5)

where A, fi, are values of A+, /A+, with B+, a^ set to their hypothesized values B^,^.
Now if we take the general log likelihood and maximize over fl+, / i*, first maximizing

over fij., we have that

and the remaining maximization over Bt is equivalent to minimization of

/.(A,, V) = log|
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with

the sample covariance matrix of Z*(1) remembering that A,,. = B^B# + /, the minimization
over B^ is for t > p given by the maximum likelihood result of Joreskog used in factor
analysis. Denoting <£, , . . . , <£p3*0, the eigenvalues of the p*p covariance matrix V and
setting

a, = max (</>,- 1,0) (i = l , . . . , p ) , (5-6)

the maximum of h(^^, V) is at A3(. = A+ with

see, for instance, Mardia, Kent & Bibby (1979, p. 265). The maximized log likelihood to
be compared with (5-5) is then

t, V). (5-7)

The reference value of unity in (5-6) stems from the transformation to identity error
variance matrix preceding (5-1). Twice {(5-7) minus (5-5)} gives a log likelihood ratio
test which is asymptotically distributed as chi-squared with

p ( p + l ) - | p ( p - l ) = | p ( p + 3)

degrees of freedom, where this calculation of degrees of freedom takes into account the
indeterminacy in A+ up to a p x p orthogonal matrix.

When p = 1 twice the log likelihood ratio specializes to

l}, (5-8)

where from (5-5)

v=rII|z*(I>-/iU-.
Note that, had we not reduced the model to a canonical form as in (5-1), then the

degrees of freedom of the likelihood ratio chi-squared would have been

corresponding to the more specialized null hypothesis a = a, B = B.
Note finally the crucial assumption of a known £ distribution. Actually a likelihood

ratio test for detection of a change in (m, F) under the assumption of (a, B) fixed has
precisely the same test statistic as one to detect a change in (a*1', B+) under fixed (m, F).

In providing the above likelihood ratio test statistic we have also in the process provided
interval and more particular point estimates of a^\ B*. Whilst fl* effects both the mean
and variance of the distribution of Z^\ a change in a^" merely effects the mean of this
distribution. Should a change be indicated by the likelihood ratio procedure, the maximum
likelihood estimates of a^", B+ may be used to correct the calibration relationship.
However in such a correction we will have to rely on the known fixed distributions of £
and if such an assumption is deemed too strong a detected change will need to be
corrected by recalibration.
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Section 3 of the present paper discussed the prediction diagnostic (3-1) for a single
observation. With a, B, F known from the calibration experiment this diagnostic for the
ith prediction observation is

from (5-3). Thus Ri or R_, the total over the t prediction observations, is not directly
relevant to correcting change in the calibration parameters. An analogous insight is given
in § 4 without the strong assumption of the known £ distribution.

The above likelihood ratio procedure tests for a change in both mean and variance of
the transformed and selected p components Z*(1). Tests of variance are notoriously
sensitive to normality assumptions (Box, 1953), and should perhaps be made robust.
Alternatively and perhaps more usefully, one may derive graphical monitoring procedures.
When p = 1 we have a single component Z*w for i = 1 , . . . , / whose mean and variance
are known to be /I and a2 under the null hypothesis. A change in mean alone is indicative
of a change in a(

+° from model (5-2), whereas a change in fl+ will result in both a change
in mean and variance and may increase or decrease either or both. A time series plot of
(Zf(1)-/x)/<j will provide a plot of a random standard normal sample. Control or cusum
charts could be utilized for the purpose of monitoring process progress. When p> 1,
then Ao!(Z*(1)-/2) is Np(0,1) under the null hypothesis and drift in the parameters
a + \ Bt will manifest themselves in changes of mean from zero and changes in the
covariance matrix from the identity matrix /. The simplest single check is probably
provided by the Mahalanobis squared distance

which will be a random sample from a chi-squared distribution with p degrees of freedom
under the null hypothesis. Gnanadesikan (1977, p. 172) describes graphical methods
involving chi-squared or gamma plots.

When the parameters are expected to change slowly through time, a Kalman filter
updating procedure might be utilized. In this paper we have assumed a sharp and constant
change in the parameters. If change were more progressive it would serve to lessen the
power of the proposed test. Smith & Corbett (1987) have utilized the Kalman filter in
the calibration of cyclists for measurement of a marathon run.

With t future Z-values, the next section looks at the amount of information available
to measure change. Assuming that the unknown £, (i = 1 , . . . , t) form a random sample
from a known distribution, as in the above, we show that there may be little information
relative to the case where £, are known, the calibration case. The rub then is that the
proposed test of parameter change may only be able to pick up sizeable changes and
regular recalibration may be unavoidable. The example of § 7 ends our investigation on
a more positive note by illustrating how in practice a change in calibration parameters
can be detected and corrected.

6. COMPARATIVE INFORMATION, SUPERVIZED VERSUS UNSUPERVIZED LEARNING

To illustrate the comparison we assume p = q = 1. For so-called supervized learning,
the f x-values are known, and with a simple linear regression model we have the following.

Case 1. Z, = a + BXj + e, (i-l,...,t), with e, a random sample from N(0, a2), con-
forming with the notation prior to the canonical reductions of the previous section.
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For unsupervized learning, on the other hand, the x's are unknown but are assumed
to form a random sample from a given N(0,/2) distribution.

Case 2. Z, = a + e, (i = 1,...,/), with e, a random sample from N(0, 82) and 82 =

Suppose a is known but fi is unknown. For Case 1, the information from t observations
is I(p) = tf2/a\ where / 2 = £x2/1.

For Case 2, the log likelihood for a single observation, Z, is

= c - log(S) - (Z-a)7(2S 2 )

so that the information from / observations is J(/3) = 2f(/3/2/S2)2.
Comparison shows that J may be much smaller than /(/3). Assuming t h a t / 2 = / 2 ,

where p2 = /32/2/52, and the ratio is always =£5. The more accurate the calibration, the
nearer p2 to 1, and the closer the ratio to zero. However, the case of high p2 corresponds
to very precise determinations of /3 from Case 1 and, although relatively less precise,
Case 2 may still provide quite precise information in absolute terms. Overall, though,
knowledge of the true distribution of £ constitutes a strong assumption and, if economi-
cally feasible and a priori warranted, regular recalibration is desirable.

7. AN EXAMPLE

Here we illustrate the use of statistics for testing and correcting for change in the
calibration relationship developed in § 5, and the further diagnostics R and Rx. This
will show that, despite reservations about the power of the test, real changes are quite
detectable and in fact a change is signalled where one was not a priori envisaged. We
have used three sets of data from the Flour Milling and Baking Research Association:

Set I: A population of protein values, X values, accurately determined for 381 samples
of white flour, milled from single U.K. wheat varieties.

Set II: A calibration set of 57 of these flour samples with recorded values of protein,
X, together with three logged near infrared, NIR, reflectance values at wavelengths
2180, 2100, 1680 nanometers, denoted by YlyY2,Y3.

Set III: A further set of 39 near infrared reflectances at the six wavelengths comprising
samples of 39 flours,
(a) 20 flours of similar origin to those in sets I and II;
(b) 13 flour or flour-like samples, e.g. ground wheat, wholemeal, flour from

Saudi Arabia, etc.;
(c) 6 very unflour-like samples, bran, gluten, improver, etc.
True protein measurements were not available for this set of 39.

The mean protein values in sets I and II were similar although the standard deviation
in set I was about twice that of sample II. It seems sample II was chosen from population
I purely on grounds of ready availability and not deliberately to achieve a smaller standard
deviation. Our method uses the population I standard deviation as typical of future
samples and this corrects for an inbalance in the chosen samples as regards protein. The
mean and variance of the 381 observations in data set I were m = 8-22 and F = (1-22)2

respectively.
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Sets I and II included laboratory measurements of moisture, too. The analysis has
concentrated on protein. However, systematic selection on moisture in combination with
protein would warrant modelling both moisture and protein in order to investigate protein
calibration. We have kept analysis simple by ignoring moisture completely, but a need
for recalibration might be caused by a systematic change in moisture.

By concentrating on protein alone, p = 1, we are able to telescope the approach through
(5-l)-(5-7) by noting that there is a single canonical variate relating Y to X and that
this is most easily obtained by regressing X on Y with the resultant equation from data
set II, using the variables Yx, Y2, Y3 for predicting protein,

X = 12-7 + 0-00494y,-0-00323 y2-0-00243y3 ,

with 92-6% variation explained. This combination of the three NIR values, scaled to give
a residual standard deviation of 1, yields Z*(1) from data set II and the regression
Z* ( l ) = -81-61 + 6-23X and of course 92-6% of variation as explained above. With this
residual standard deviation and mean and standard deviation of population / we are
able to specify

(1 = -81-61+6-23 x 8-22 = -30-34,

A = 1 + (6-23)2 x (1 -22)2 = (7-67)2,

With the reduction to p = 1, the test statistic, W, minus twice log likelihood ratio, is given
by (5-8).

Table 1 gives summary statistics for the three subsets of flour type from set III. Since
!/?(/?+ 3) = 2, we use chi-squared tables with two degrees of freedom; all values of W in
the table are greater than even the upper 0 1 % point. Now it is reasonable to assume
that protein values for the U.K. flours are like those of population I and that the significant
difference is due to a change in the calibration relationship. This was not expected, but
after further investigation turned out to be explained by a time lag and drift between
data sets II and III.

Table 1. Statistics derived from data set III; t, sample size

Mean

R.,(4-2)
Rx, (3-2)
VK(5-8)

U.K. flours
1 = 20

-20-4
5-97

66
47
36-8

Flour-like
/ = 13

-15-9
12-81

8671
125
52-8

Flour-unlike
t = 6

930
167-7

3720
13138
3898

Expected
under Ha

-30-34
7-67
—
—

Flour-like samples and even more so the flour-unlike samples could in reality manifest
significant values of the test statistics due to a different distribution of protein values as
well as a changed calibration relationship.

Figure 1 shows Z* ( l ) plotted for each of twelve different 'flours'. The baseline here is
as given in Table 1 as 'expected under Ho', on the assumption that the £ distribution is
as in data set I. Here flours B-G constitute flour-like samples and H-L flour-unlike
samples, and A represents the 20 U.K. flours.
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Fig. 1. Plot of Z* ( l ) against 'flour' type for 39 observations of
data set III; A, U.K. flour; B, Saudi Arabian flour; C, South
African flour; D, wheat flour; E, ground wheat; F, wheat feed;
G, wholemeal; H, bran; I, gluten; J, improver; K, polydextrose;

L, dried bread.

Looking closer at the observed means and standard deviations for the three flour
types we can see that for U.K. flours the standard deviations are essentially the same
whereas the change in mean from —30-34 to —20-4 is clearly significant. Thus for U.K.
flours correction of the calibration relationship would seem to be adequately accomplished
by adjusting a™ from the calibration value of -81-61 to -81-61 + (30-34 - 20-4) = -71-65.

On the other hand, for both the other flour types a chi-squared variance comparison
with (7-67)2 yields significant test statistics at the 5% level, indicating that both a*' and
B+ have changed. We could go on to adjust for both of these but also taking into account
the large values of the prediction consistency diagnostic Rm we would be more wary and
led to recalibrate. The example is contrived in that we know that the flour-like samples
are not entirely homogeneous and not similar to the U.K. flours, but had we thought
that we were dealing with quite similar material we would be more persuaded to recalibrate
than correct given such large values of R_. The individual components of R, Rx are
nominally independent chi-squared on {q-p) = 2 and p = 1 degrees of freedom. A test
using statistic R = 66 is just significant at the 1% level on 20 x 2 = 40 degrees of freedom
for the U.K. wheat flours. All the other entries are highly significant. These statistics are
more illuminating when used at an individual unit level. Figure 2 gives a plot of log R
versus log Rx for the 39 observations identified by 12 symbols. While some observations
are high on both measures others are high on just one of the measures. Here R is an
inconsistency diagnostic whereas Rx indicates an outlier in X space.
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Fig. 2. Prediction diagnostics plotted for data set III; 'flour'
type identified by letters given in the legend to Fig. 1.

ACKNOWLEDGEMENT

We are grateful to the Flour Milling and Baking Research Association and in particular
Dr T. Fearn for providing us with the data analysed in § 6.

REFERENCES

Box, G. E. P. (1953). Non-normality and tests on variances. Biometrika 40, 318-35.
BROWN, P. J. (1982). Multivariate calibration (with discussion). / R. Statist. Soc B 44, 287-321.
BROWN, P. J. & SUNDBERG, R. (1987). Confidence and conflict in multivariate calibration. /. R. Statist.

Soc. B 49, 46-57.
GNANADESIKAN, R. (1977). Methods for Statistical Data Analysis of Multivariate Observations. New York:

Wiley.
MAKOV, U. E. (1980). Approximations of unsupervised Bayes learning procedures (with discussion). In

Bayesian Statistics, Ed. J. M. Bernardo et al., pp. 69-82, 128-37. Valencia University Press.
MARDIA, K. V., KENT, J. T. & BIBBY, J. M. (1979). Multivariate Analysis. London: Academic Press.
NAES, T. (1985). Multivariate calibration when the error covariance matrix is structured. Technometrics 27,

301-11.
NAES, T. (1986). Detection of multivariate outliers in linear mixed models. Comm. Statist. A 15, 33-47.
NAES, T. & MARTENS, H. (1987). Testing adequacy of linear random models. Statistics 18, 323-31.
OMAN, S. D. (1988). Confidence regions in multivariate calibration. Ann. Statist. 16, 174-87.
OMAN, S. D. & WAX, Y. (1984). Estimating fetal age by ultrasound measurements: An example of multivariate

calibration. Biometrics 40, 947-60.
SMITH, R. S. & CORBETT, M. (1987). Measuring marathon courses: An application of statistical calibration

theory. AppL Statist. 36, 283-95.
WILLIAMS, E. J. (1969). Regression methods in calibration problems. Bull Int. Statist. Inst. 43, 17-28.

[Received July 1986. Revised August 1988]


