Multivariate Calibration

P. ]. Brown

Journal of the Royal Statistical Society. Series B (Methodological), Vol. 44, No. 3.
(1982), pp. 287-321.

Stable URL:
http://links jstor.org/sici 7sici=0035-9246%281982%2944%3A3%3C287%3AMC%3E2.0.CO%3B2-Y

Journal of the Raval Statistical Saciety. Series B (Methadological) 1s currently published by Royal Statistical
Saciety.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you
have aobtained prior permission, you may not download an entire 1ssue of a journal or multiple copies of articles, and
you may use content in the JISTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be abtained at
http://www jstor.org/journals/rss. html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

JSTOR 1s an independent not-for-profit orgamzation dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding JSTOR, please contact support @jstor.org.

http://www jstor.org/
Mon Dec 4 12:31:07 2006



J. R. Statist. Soc. B (1982},
44, No. 3, pp. 287-321

Multivariate Calibration
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[Read befare the ROvaL STATISTICAL SOCIETY at a meeting organized by the RESEARCH SECTION on Wednesday,
March 3rd, 1982, Prafessar R. N. Curnow in the Chair]

SUMMARY
A set of g responses Y =(¥,,..., ¥,)" are determined by a set of p explanatory variables
X =(X,,....X,)". A set of [ observed vectors ¥ are available at a single unknown X and it
is desired to draw inferences about this unknown vector X. In order ta dao this calibrating
data js available jointly on (Y,X) where two situations are distinguished (i), X is
controlled, (i) X is random.

Using aorthodox sampling theory on the one hand and Bayesian methods on the other
hand point estimators and confidence regions are derived and conirasted. A pracedure
for selection of a subset of responses is given. Finally a comparison is made of the
methods on data from {a) a random calibration experiment of wheat quality using an
infrared spectrometer and (b} a controlled experiment of point finish.

Keywords: CALIBRATION; MULTIVARIATE REGRESSION, PREDICTION; CONTROLLED AND RANDOM
EXPERIMENTATION, BAYES

1. INTRODUCTION
1.1. Controlled and Random Calibration

THE well-known problem of calibration involves, in the simplest case, making inference about
an unknown px 1 vector X' from a singie random observed ¢ x 1 response vector Y. To this
end, the relationship between Y and X is calibrated with experimental data (Y, X)), i = 1,...,n,
where Y, X; are ¢ x 1 and p x | vectors respectively. This situation, the inverse of the more
usual desire to predict ¥’ from X', is asymmetric in X and Y in that (i) X and X' are usually
accurately determined and {1i) X in the calibration experiment may be at fixed prechosen levels,
that is the calibration is controlled. When X as well as Y are random, calibration is said to be
random and then only (i) is liable to distinguish the problem from that of predicting Y' from
given X'. With the notable exception of Williams (1939), the existing literature is concerned
with p = g = 1, although Draper and Smith (1981, 2nd edn, p. 125) touch on g =1, p > 1.

When there is no standard measurement X, comparison is of two (or possibly more)
instruments in a symmetric way. For a discussion of such comparative calibration see, for
example, Williams (1969) and Theobald and Mallinson (1978). We will not explicity be
concerned with such comparative problems.

An example of data from a controlied calibration experiment is given in Aitchison and
Dunsmere (1973, p. 185). Enzyme concentration in blood plasma can be determined by a long
and costly laboratory method whereas an autoanalyser method is quick and cheap. Here to
calibrate the autoanalyser nine plasma samples selected to cover the range of enzyme
concentrations have each been divided into four aliquots, one aliquot being assigned to the
laboratory method and the other three to separate analyser determinations.

Ideally one would like the conditional distribution of X given Y but of course this cannot
be obtained from the conditional distribution of ¥ given X without data from the marginal
distribution of X, or at least data from the marginal distribution of Y corresponding to random
X. No problems arise in the Bayesian approach since a prior for X' can always be given as
demonstrated by Hoadley (1970) or Aitchison and Dunsmore (1975, Chapter 10). Otherwise
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the simple normal theory linear calibration model has been treated from a sampling theory
approach, for example Browniee (1960, Section 11.5), and via “marginal likelihood”, Minder
and Whitney (1975). More general regression functions of Yon X were considered by Clark
(1979), concerning exponential decay and carbon-14 dating, and by Scheffé (1973), allowing for
example polynomials in X. Asymptotic confidence intervals for this are given by Lundberg and
De Maré (1980). Here monotonicity over a relevant range of X ensures uniqueness of estimated
X' for given Y'.

Monotonicity, it should be emphasized, should predicate any effective univariate calibra-
tion. However, we shall see in Section 5, that in multivariate calibration simple notions such as
pairwise monotonicity are not essential.

If, in the calibration experiment on the other hand, Y and X are random then no difficulties
arise in specification of the conditional distribution of X given Y. Hence if (X', Y’) may be
assumed to derive from the same joint distribution inference about X’ for given Y’ is
immediate. Often however X will correspond to random true values accurately determined.
Whilst the conditional distribution of Y given X may be reasonably assumed to be normal,
involving measurement errors superimposed by the cheap and quick measuring instrument,
the distribution of X, and hence that of X given Y, may not be normal. This in particular wiil
deserve careful checking from the data, perhaps along the lines of Healy (1968) or Cox and
Small (1978). It may thus be advantageous to derive the distribution of X given Y separately
from Y given X and the marginal distribution of X. Lwin and Maritz (1980) follow this course,
basing estimation of the marginal distribution of X on the sample distribution function. They
analyse random calibration data on water content of soil using as an accurate laboratory
method (X} and a quick on-site method (Y).

Briefly, for point estimation, if (v, x;, f) is the probability density function of ¥, conditional
on X, = x,,i = 1,...,n, then the predictor of X’ when Y’ = ¥ is observed is

Zw,—x,-

w; = f(yrtxh ﬁ]/z,f(yr | xj! )8)

This is a weighted average of the x; in the calibration experiment with weights proportional to
their probabilistic distance from y'. When as is usual, the adjustable parameter § is unknown, it
may be replaced by a good estimator, perhaps the maximum likelihood estimator. No attempt
however is made to allow for the increased uncertainty due to estimation of g. A multivariate
extension of their method is described in Section 4.2 and applied to the data example of that
Section.

Aside from such considerations, for random calibration nothing new is incurred, from
going to p,q greater than unity, over and above standard multivariate regression theory.
Shrinkage methods may be advantageousiy used as for example in Brown and Zidek (1980).
The subsequent emphasis will therefore be on controlled calibration. An interesting inter-
mediate possibility not cansidered is where some X variables are controlled and some random
as in Braoks (1974).

Discrimination, or medical diagnosis described for example in Titterington et af. (1981), or
pattern recognition as it is referred to in the electrical engineering literature (Kanal, 1974
provides a good review), shares similar features with the calibration problem. It differs in that
typically X is univariate and discrete taking a set of nominal values which identify from which
of several populations the Y derives. In the case of discrimination, Geisser (1964) clearly
distinguishes between the random and controlled experiment, whereas the distinction is not
often made within the engineering literature where the emphasis is on nonparametric
procedures as opposed to probabilistic manipulation. In the context of random X and medical
diagnosis Dawid {1976} and both P.J. Brown and D. R. Cox in the discussion of Titterington et
al. {1981) emphasize the advantages of modelling X given Y over that of Y given X. This may

where
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be countered by the fact that in many parametric models estimation from X given Y may be
improved by modelling via Y given X and marginal X, if Y is not S-ancillary for the
parameters of X given Y, as for example in Efron {1975).

The importance of the distinction between controlled and random calibration should be
emphasized. It has often been ignored in the past. Of course the use of the conditional
distribution of X given Y in random calibration need not be confined to jeintly normal X and
Y, as in much of our subsequent development. For example, X and ¥ might be considered
independent Poissan entries of a p x p contingency tahle. Then conditional en Y the rows are
multinomial and conditional on X the columns are also multinomial but with different
probabilities. Fortunately also each margin is S-ancillary for these conditional probabilities.

Specifically a random batch of apples might be sorted mechanically into p sizes, Y, whilst a
careful true sorting gives random p-dimensional vector X. Grassia and Sundberg (1982)
examine this, working essentially with the multinomial distributions of ¥ given X. However to
predict the true size category X from similar random batches, we would simply advocate the
use of the multinomial distributions of X given Y. When X is controlled, as for example in fish
stock calibration (Pelia and Robertson, 1979), the conditional distribution of Y given X is
fundamental, although one message of this paper is that under some strategies for controiling
X, it is better to behave as if X were random and formally derive the distribution of X given Y.

1.2, Univariate Controfled Calibration Reviewed

Adherents of various approaches to controlled calibration have generally concentrated on
comparisons between point estimates of X’ for given Y'. Whereas Williams (1969) and others
insist an using the fitted regression of Yon X and hence deriving the estimate X' of X' from

Y- P = (wa"{Sxx] (fr - i]a
Krutchkoff (1967) suggested regressing X on Y and obtaining X' from
XN —Xx = (Sxy/Syy] (Y’ -—~J_,J)1

Where‘ x = Exi/”‘ﬂ J_'J = E_P,-ﬂ‘l, Sxy = E(x!—'i)(yl—'j))i S_uy = E(yi'_j")zﬂsxx = E{xi_i]z‘ Thf‘. two
estimates coincide only when X relates perfectly to Yin linear fashion. The suggestion of
Krutchkoff (1967) runs counter to established protocols stemming at least from Eisenhart
(1939) since the n X-values are fixed. However from a Bayesian point of view Hoadley (1970)
showed that this latter approach would be justified if the X-values were chosen in a manner to
reflect the prior beliefs about the future X'. Broadly, regressing Y on X corresponds to diffuse
prior information about X'. In sampling theory terms Hoadley's result implies that the
procedure of regressing X on Ywill do well if the unknown X' happens to be in a part of X
space reasonably central to the set of X-values prechosen in the controlled calibration
experiment. The approach would not fare s¢ well if X' were outside the prechasen range. The
point at which ¥ on X does better than X on Yis not clear from the selection of simulations in
the literature. At any rate for a proper comparison of point estimates a bounded loss function
would be necessary since if the estimated slope of Yan X happens by chance to be near zero, X'
becomes very large. The expected mean square error of ¥ is indeed infinite and mean square
error as a criterion has been criticized by Williams (1969).

There are at least four different ways to obtain a confidence region for X" fiducial as
described by Fieller (1954), essentially a joint sampiing approach; conditional sampling, as in
Wilks' tolerance regions and as developed by Scheffé (1973); marginal likelihood (Minder and
Whitney, 1974); Bayes as in Hoadley (1970).

Perhaps the simplest approach is that of joint sampling . It is easy to see that given «, §, a2,
X, X’ the joint sampling distribution of ¥, & =¥, fi = S /S I8 such that

(Y —a—fX)[a” {1+ 1/n+(X'—%)%/S,,}]* (1.1)
1s standard normal. Note that this standard normal does not involve any of the conditiening
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parameters &, §, 6° or X, X' so that probability statements are also true unconditionally and in
particular over repetitions of (¥, X) where both Yand X are allowed to vary. Replacing ¢* by
&2, the usual unbiased estimator derived from the residual sum of squares after regressing Yon
X, leads to a 100(1 —y) per cent confidence region as those values of X’ satisfying the quadratic
inequality

(Y—a—AXP <42 ) {1+ 1/m+ (X' —0)YS..), (1.2)

where t,_,(y) is the two-sided 100y per cent point of the student t-distribution on (n—2)
degrees of freedom. This region is a respectable interval provided the z-test of the hypothesis
B = O is rejected. Otherwise it is either the whole real line or even two disjoint semi-infinite
lines! This has been the source of some consternation, see for example Neyman's discussion of
Fieller's paper or Hoadley (1970). The practical man’s answer that one should not attempt
calibration when one is not confident that § # 0 might be countered by the argument that if
the procedure is obviously suspect in some circumstances then the solutions may be far from
ideal in the other cases where there is no obvious flaw,

The conditional sampling approach requires the specification of two probabilities or
significance levels and produces operationally dense statements like “I am 80 per cent certain
that 95 per cent of the statements I make are true”. In univariate (polynomial) calibration it has
been extensively developed by Scheffé (1973). He gives an excellent discussion of necessary
assumptions and provides tables for the implementation of his method. This approach via
tolerance regions is strongly criticized by Lindley (1972, p. 56).

Both a marginal likelihood approach and a Bayesian approach to the derivation of
confidence regions are described in the two papers already cited. Minder and Whitney use
various approximations to their “marginal likelihood” to derive confidence regions. Hoadley
emphasised the need for a proper prior distribution for X' in order that the posterior
distribution be integrable. With one specially chosen but not unnatural prior, posterior
intervals for X' can be obtained simply from regression of X' on ¥,

1.3. Examples of Multivariate Calibration

Some examples of multivariate calibration are given in Williams (1959, Chapter 9). We were
motivated to the present paper by two different examples. The first involved a random
calibration experiment and related p = 2 accurately determined measurements of moisture
and protein content of wheat samples to six infrared reflectance measurements at six different
wavelengths. Four responses (¢ = 4), derived as differences of a subset of these reflectance
measurements, (112), (4)-3), (44(5) and (1}H5), are tabulated with the accurate laboratory
determinations in Table 1.

The second example concerned a controlled calibration experiment where p = 2 factors,
pigmentation and viscosity of paint, were controlled each at three levels in a three-by-three
completely balanced experiment. Again ¢ = 6 responses involving optical properties and
measuring appearance were obtained. The aim in future was to be able to match the paint by
taking optical measurements. The complete data for this is given in Table 2.

These examples are analysed in Sections 4 and 5, the analysis being no more than
comparative and illustrative of techniques developed in Sections 2 and 3.

1.4. A Formulation of the Multivariate Controlled Calibration Problem
The controiled calibration model assumed is

Y, =m(X,0)+e, i=1..n (1.3)

where Y, isa g x 1 vector of responses, X; a p x 1 vector of fixed explanatory variables, m(X,, ©)
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is a ¢ x 1 vector function of X; of known form and @ a matrix of unknown parameters, e, is a
g x 1 error typically satisfying

E(e) =0, Elee) =T, (1.4)
so that with normality additionally assumed, given I
e~ NI, (1.5)

where “~" denotes “distributed as”. Errors are assumed independent from abservation to
observation. Qther error assumptions may be desirable and may be incorporated at the
expense of a more complicated analysis.

The observations of the prediction experiment are assumed to follow the same assumptions
as those of the calibration experiment. In particular

Y, =mX,@)+e), j=1,.,1 (1.6)

where €] satisfy (1.5) and are independent of e, i = 1,...,nfor j = 1,..., I Each observation Y} is
observed at the same unknown X', j=1,..., L

The full problem defined by (1.3), (1.5) and (1.6) has three distinct sets of unknowns or
parameters, (i) @ determining the regression of ¥ on X, (ii) I' determining the distributions of
deviations about the regression relation and (iii) X' which in conjunction with @ determines
the mean of Y/, j = 1,...,L For ease of analysis m(X, @) in (1.3), (1.6) may be categorized by
whether it is or is not linear in X and ©. Being linear in both corresponds to standard
multivariate regression. When m(X, ®) is only linear in @ as is often the case when derived
variables are incorporated, for example polynomials in X, then (1.3) is stili easy to analyse but
(1.6) is noo-linear in the unknown X'. Non-linearity in @ poses probiems for both (1.3) and
(1.6). Note the logical structure of (1.3) and (1.6). The calibration experiment (1.3) provides
information on ®. Even if » is infinite and @ is then known, estimators of X' from (1.6) will
depend for their accuracy on the structure of m(X', @), T" and the number of replicates {. Thus
for example even when @ is known, an estimator of X’ can only be consistent as ! = co. Finally
it may be cbserved that if ¢ is less than the number of independent variables, p, if there are no
derived variables, X’ cannot be completely determined. We will therefore avoid such ill-
specified problems.

2. SAMPLING THEORY RESULTS
2.1. Controlled Calibration Linear in @
The multivariate linear regression model in which m(X,®) is linear in ®@ is assumed.
Accordingly we specialize {1.3) and (1.4) to

Y =1a"+XB+E (2.1)
Y =1la"+1E"B+E (2.2)

where Y(n x g), E(nx q), Y{Ix q), E'({ xq) are random matrices, X(n x p) is a matrix of fixed
constants as are the vectors of units, 1, which are respectively # x 1 and I x I; {e, B) replaces @.
Here £ is the p x 1 vector of unknowns previously denoted as X', a Greek letter perhaps being
preferable. In this formulation X might consist of p variables derived from a smaller set as in
‘polynomial regression. However in this case & is a vector function of the same reduced number
of unknowns. The use of the letter £ rather than X' helps to further emphasize this possibility.
The case of no derived variables will be referred to as standard multivariate linear regression.
We reserve X' instead of & for this case.
Since explanatory variables are fixed we may without loss of generality assume

Yxp=0, Yxytn=1, j=1,.5s (2.3)
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that is columns of X are centred and have average sum of squares one. Using a canonical form
of the model (2.1), (2.2) it is straightforward, as shown in the Appendix, to obtain the
multivariate analogue of (1.1)

(¥'—&—BTE) ~ N0, Ta()), (2.4)
where
0% €)= LI+ 1/n+ETXTX) 5 (2.5)

Let S (g x q) be the residual sum of products matrix, pooled from the calibration and prediction
experiments when { > 1. Then S has a Wishart distribution with scale matrix I" and degrees of
freedom v+4—1 (see Appendix) where

v=n—p+i—g—1. (2.6)
Hence it is shown in the Appendix that, with 8% a ¢ x ¢ matrix square root of S,
S™HY' —a—BE)/atg) ~ T(u: 1,), 2.7)

where T{v; E) denotes a multivariate student distribution with mean vector zero and scale
matrix L such that v*T(y; L) is the standard multivariate student distribution defined for
example in Press (1972, p. 125). From, for example, Dawid (1981), it follows that a 100{I —v)
per cent confidence region for § is all & such that

(¥ —a—B78)"S "Y' — & —BTE)/o*(€) <(q/v)Fi(y) (2.8)

where Fi(y)is the upper 100{1 —y) per cent peint of the standard F-distribution on ¢ and v
degrees of freedom. This reduces to (1.2) when p = g = 1. In standard multivariate linear
regression (2.8) corresponds to the fiducial limits of Williams (1259, p. 169). In pelynomial
regression (2.8) may resuit in rather complicated regions in the reduced variable space. This is
lJustrated by the example of Section 5. However, standard multivariate linear regression
preduces natural elliptical regions under a condition which is a direct extension of that of
simple univariate calibration. The results are given by Theorem 1 of the next Section.

2.2. The Form of Confidence Region in Standard Multivariate Multiple Regression
Here we denote § = X’ to emphasize that the standard multivariate linear regression madel
is adopted. [nequality (2.8) may be written as
XTBS BT — k(X" X) )X —2AY — &S ' BX + (Y — &S (Y —&)— k(" +n 1 <0,
2.9)
where

k = (g/v)Fi(y) (2.10)
This is a quadratic form in X'. Let
C=BS'BT—&kX"X)"! (2.11)
This is symmetric. Suppose the following condition holds.

Condition 1

The matrix C defined by (2.11) is positive definite.
We have the following

Theorem 1

(i) When p = ¢, Condition 1 is sufficient to guarantee that the roots of the quadratic form (2.9)
are all real and the region is a closed ellipsoid.

(ii) When ¢ > p the roots need not be real even when Condition [ holds.
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(iii) Condition [ corresponds to a test of the null hypothesis XTR = @ for any X'. Thus
Condition 1 will typically be satisfied provided X'TB >0 and the calibration experiment is
of a sufficient size relative to random variation.

Proaof of {i) and {ii). Represent (2.9) as
XTCX'-DTX - X"D+ E—F <0,
where
D=BS"YY-4&, E=(V—-&"S "(Y—-&), F==kil "+n "
Completing the square this becomes
IX—C™'D[2-D"C 'D+E—F<Q, (2.12)
where | z]& = 2" Cz. Now
E-DT'C!'D=(Y—-&TS ' —S 'B"C'BS" (V' —g),
and the matrix of this quadratic form is, on substitution,
STI-ST'BTRBS BT -K(XTX)" Y I BS L
Using the binomial inverse theorem (Press, 1972, p. 23} this may be rewritten
(S—B"X"X(k~"HB) ! {2.13)

Let W=(X"X}*BS % then (WWT—kl)>0 from Condition 1 so that the eigenvalues
wi,..,w> are all >k and then the eigenvalues of WT'W are wi, ..., w> supplemented by
(¢ —p) zero eigenvalues. Thus (2.13) is negative definite as long as g = p but, for g>p, {g—p)

eigenvalues will be positive. Thus schematically, when ¢ = p, {2.9) is
|X'—C™'D | 2—constant <0,

where C >0 by Condition 1. Condition 1, C>0, ensures that the quadratic form is strictiy
convex. The subtraction of a constant above guarantees that it cuts the X' axes. When g > p this
constant may be negative. This will occur when the g elements of ¥ are sufficiently
contradictory in their information about the p elements of X' to overwhelm the constant F and
the negative contributions from the quadratic form above.

(ii)) Proof of this follows from standard methodology as given for example by Anderson
{1958, Section 8.3). We will derive the results from the canonical form of the Appendix, namely

Zi, = (i) ai+e] i=1,..p, (2.14)
with AT = {&;,...,a,) and A = PTB; the condition X'"B = 0 corresponds to w™ A = 0 where
w=p'X is a(px1) vector. That is

Wity +.tHwpatp = (O

Now choose [ = w{ni) */a for i=1,.., p where a® = Tw/(ui) so that 1T} = 1. Next,
orthogonally transform the p vectors in {2.14) by means of a p x p matrix L such that the first
column of L is L

Multiplying (A.1.1), the stacked version of (2.14), by LT, the error praperties are unchanged.
[fUT = Z[ L = (ua,,...,u,) the null hypothesis is that the mean of u, is zero and the sum of
products due to this is

u; uLT = {ITZL]T(ITZI} = RTWWTA/az
or
BTXXTBAXT(XTX) "t X).
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The residual sum of products is 8§ given in Section 2.1 and hence the likelihood ratio test
statistic is a function of Wilks’ criterion, the ratio

IS|/1S+BTX'X"R/a?|,

which has the distribution U, , , of Anderson (1958, Section 8.4). Manipulating the ratio of
determinants

Uy go=IL+8 3 BTX'XTBS 3/0?| !
=(1+XTBS 'B"X'/4%) !

by Sylvester’s theorem (Press, 1972, p. 20). Hence from Anderson (1958, Section 8.5.3) the
statistic for testing the null hypothesis X'TB = 0 is

XTBS 1BXXT(XTX) ' X (2.15)
and is distributed as (g/v)F2 The result {iii) follows.

Some remarks concerning Theorem 1 may be in order. Williams (1959) p. 169 works
directly from (2.8) and does not derive our Condition 1 for real roots when p = g. When g>p
the effect on the confidence interval of the information in ¥’ is not examined; rather he
examines the consistency of the g elements of ¥’ with the calibration experiment.

When condition 1 fails to hold confidence regions will be nan-convex and possibly infinite
as in the case ¢ = p = | described for example by Hoadley (1970).

Letting y — 1, then & — 0 and Condition 1 is sure to be satisfied if B # 0. The resulting
confidence region degenerates to the point

R =B 1B LBS (V' —4&). (2.16)

This is the natural estimator of X’ which would result from maximum likelihood (or weighted
least squares) estimation of X' in the prediction experiment when (a, f, I') are replaced by
(&, fi, S) from the calibration experiment, Note how C~* I, the central point of the confidence
region (2.9) is dependent on the canfidence caefficient through k. It may be noted that C™' D
might be loosely viewed in the form of an “expansion” estimator comparable to X’ through the
term — k(X" X) ™",

In the general case of functionally related components of &, it will be necessary to minimize
numerically the ieft-hand side of (2.8) to estimate X'. An example of this is given in Section 5 in
the discussion of the paint data.

2.3. Testing the Redundancy of a Subset of Responses

In the standard multivariate regression case, the larger the eigenvalues of matrix C given by
(2.11) the steeper the sides of the parabolic bowl given by (2.9) and hence the narrower the
confidence region for X'. If the g variables are reduced to g, < g with ¢, = p, a new calculation
of (2.12) gives

Cl = ﬁ1 S, ! B}“‘—kl(x'r x)_l:

where v, and then k, are recalculated from (2.6) and (2.10), respectively, on replacing g by g,;
aiso B, is the appropriate g, column-subset of B and S, the corresponding (g, x g,) submatrix
of 8. Intuitively, if the eigenvalues of C, are not much less than those of C, the (g — ¢,) responses
deleted are redundant in specifying X' given the ¢, responses. The notion of “not much less”
may be given more formal weight by adopting a test of additional information as given by Rao
(1965, Section 8c.4). The null hypotheses of Theorem Ifiii) is X'* B = 0, hence the hypothesis
matrix is the rank one vector X’ and Rao's distributional simplification in the rank one case
may be applied.

The parailel is best seen in terms of the proof of Theorem 1(iii) given in the previous section,
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Formula (2.15) is Rao’s T?/k and hence from his (8c.4.10)
XTRS™BT—B, S; B X /(XT([(X"X}~' +B, S, ' BN X"
has a {(g—q,)/v} F™** distribution. Thus if,
XTBS BT —o(X™X) " —(1 + ko) B, ST BT X >0 (2.17)

where ko = {(g—q,)/v} Fi™9(), the null hypothesis of no additional information may be
rejected at the 100y per cent level. If the matrix in the square brackets of {2.17) is positive
definite the null hypothesis will be rejected for all X. An alternative way of utilising (2.17)
would pick an a priori likely X’ or even a set of likely X' values. One might even check with all
X" values of the calibration experiment. A particularly appealing variation on this would be to
use jack-knifed estimates of the parameters and demand that (2.17) be satisfied for all # one-at-
a-time omitted values of X. Such an approach though would be computationally expensive
and anyway implicitly assumes that all X-values of the calibration experiment are exchange-
able with the unknown X'

In Section 5, (2.17) is used to choose a subset of the optical paint responses.

Finally it may be noted that the derivation of (2.17) allows some components of & to be
functionally related. With & replacing X', then it is not necessary that the matrix be positive-
definite to satisfy (2.17) for all & Only a subset of values of € in p-dimensional space is feasible.
It s hard to know how to use this operationally. An alternative Bayesian method for
polynomial and non-linear £ is suggested in Secticn 3.1.

2.4. Comparative Formulae for Regressing X on Y and Y on X in
Standard Multivariate Regression

It would be computationally simpler if regression of X on Y was performed when Y on X is
linear. This as already mentioned would be the correct practice in a random calibration
experiment where (X, Y} are jointly multivariate normal. Armed with a formula estimating
E(X| Y)all that is required to predict X' is to substitute ¥ for Y. In this section the formulae are
compared. Units of both X and Y are adopted so that the variables are post hoc centred on zero.
In this case the estimated regression of X on Y predicts

XT = yTD, (2.18)
where
D=(Y"Y)"'YTX. (2.19)

Lemma 2. When X and Y have been centred, D may be rewritten as
STPBTX"X) ' +BRSTRT]! (2.20)
where B and § are the usual quantities obtained from regression Y on X.
Proof. Using the binomial inverse theorem (Press, 1972, p. 23), (2.20) may be rewritten
STIBIXTX -XTXBS+BTXTXB) " 'BTXTX]
_ =[ST'-STYBTX"XBH(Y"Y) ']Y"X
since
Y'Y =S+BTX"XB
=@'YTY-ST'BTXTXB)(Y'Y) ' YTX
=8"'SD =D.
From (2.16), with Y, X centred and Y' correspondingly relocated,

X =MBS'AH 'BS 'y
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so that from (2.18), (2.19) and Lemma 2
R =[(X"X)" ' +BS BT YBS B K, (2.21)
a matrix weighted average between X’ and 0. It may be written
(X™x)"* ﬁ’] =(L,+WW) * WWT[(X"X)"* R1=[WWH 14+ L1 'HX™X)# %]
using the notation introduced after (2.13). Let
U=(X"X) #*XTY(YTY) %

so that the positive eigenvalues of U are the usual cancnical correlations between X and Y.
Then, since
S=Y'Y-¥TX(X"X)"*'X"Y,

T+WWH lWWT = I+ UV U UV LUT = VUV LUT,
where
V=(Y'Y)§Y'Y) +=1-UTL.

Thus the eigenvalues of (I+WWTD ™" WWT are in fact the squared canonical correlations
between X and Y. This follows since V¥ UV ™ ¥ s similar to U and

VUV LUT = VEVEUV (VI UTVH YV #

is similar to UUT.

In summary, after the same particular non-singular transformation QT(X"X)™*, where
columns of Q are orthanormal latent vectors of (WW')™* + I, components of the transformed
X and X are simply proportional, the p constants of proportionality being the p squared
canonical correlations between X and Y.

3. BAYESIAN MULTIVARIATE CONTROLLED CALIBRATION

A Bayestan formulation involving diffuse prior distributions retains many features similar
to the classical sampling results of Section 2. There are intetesting differences however such
that the Bayesian solution is worthwhile studying in its own right. In fact the Bayesian
formulation allows a development justifying regressing X on Y in some circumstances even
though X is controlled. The approach follows that of simple linear regression given by Hoadley
(1970) although we have an extra insight even in this case.

Assume the model defined by (2.1), (2.2), (2.3) and (1.5). If o{ - ) denotes a probability density
function with a subjective status, assume in addition that

(B,o, I, &) = 7(B, 0, I') (&), (1)

where the random & is a priori independent of the parameters (regarded as random) of the
conditional distribution of ¥ given X. Furthermore, assume

#(&|X) = (&), (3.2)

1.e., the controlled X values previde no information on &. Although this might at first glance
seem unnatural it may be by-passed by post hoc assuming a prior distribution for £ which is
informative in the same fashion as the data X, S-ancillarity allows us to do this. At this stage
the prior distribution for (B, &, I') may be quite general subject to (3.1). With these assumptions
it is straightforward to derive the posterior distribution of £ on integrating cut the unwanted
parameters (B, o, I').

Theorem 2. With the model defined by (2.1), (2.2}, (2.3) and (1.5) together with {3.1) and (3.2)
7(&| Y, Y, X) ac n(8) L&), (3.3)

where L(E) is the predictive disttibution of ¥,
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Proof. With the normality assumption (L.5), sufficient statistics for & and I are ¥’ and &',
the sum of products matrix on ({—1) degrees of freedom.
Thus allowing proportionality signs for dropped terms not involving &

&Y, Y,X)=nE|Y,Y,8,X)

(Y, Y|E,8, X) (&S, X)

= (Y, Y|E,8, X)),
by (3.1), (3.2) and ~

=r{Y'| Y, &8, X)n(Y |E, 8, X)n(E),
and by {3.1)

o n(Y'| Y, E,8, X) n(E)
which is the required result.

Remark. When [ = 1, the result applies to non-normal error distributions.
To construct L{E), the predictive distribution of ¥ given £, Y, X, S, is straightforward if a
standard natural conjugate prior for {B,a,T') is assumed. The use of an invariant Jeffreys prior

B, e, [)oc {T|7EFH {3.4)

leads to the predictive distribution, given, for example, when { = [, as equation (14.2.3) of Press
(1972), which formally coincides with the sampling theory result of (2.7). Thus as a function of §
we have

LE) = [o™8)}" /(o @)+ (X' —BTE) S~ \(Y' —BTg)je a7, (3.5)

where we have post hoc adopted the scale of Y centred in the calibration experiment. This
means correspondingly that we have replaced ¥'—a& by Y. Thus in standard multivariate
linear regression, replacing & by X/, (3.5) is the ratio of two quadratic forms in X’

For large {| X’ || it behaves like 1/|| X' || and is integrable provided ¢ =2 Wheng =1 asin
Hoadley (1970} a proper prior 7(X') is necessary in (3.4) for overall integrability. Note that (3.5)
may be written in the form

A/ Un+ | XE ™20+ (R4 | X =X A1/ + T+ | X339, (3.6)

where R = Y78 'Y —XTBS ' BTX', the residual sum of squares from the prediction
expetiment, and G = (XTX)™!, H = BS ! BT are the crucial ingredients of Condition 1. If it
wetre not for the first factor, (3.6) would be maximized by X’ = X'. The first factor tends to shift
this maximum towards the origin but the effect will be slight as o increases relative to ¢. The
behaviour of (3.6) could be investigated by simultaneously diagenalizing G, H; that is, it
depends an the eigenvalues of G™*H or WWT of Section 2.4; in other words the canonical
carrelations between X and Y.

3.1. A Method of Comparing Distinct Models with Regard to Prediction

The integrated likelihood (3.5) or the posterior distribution (3.3) for £ may be maximized
under two distinet models and the ratio of the resulting maxima used as a basis for determining
the preferred model in estimating X’ from a particular Y. Two distinct models might for
example be one involving just linear X and the other both linear and quadratic X. Large ratios,
say greater than five, would favour the numerator model, but see Jeffreys (1961, Appendix B)
for guidelines. An average on the log-scale of those n maxima corresponding to the n values of
Y would provide a comparisen of the two models over a rather natural range of future Y. An
approximation to this avoiding maximization would substitute the corresponding X in &

Instead of separately maximizing the posterior distributions it might be more appropriate
to consider the ratio of posterior probabilities over all X' in a region defined as the highest
posterior density region of X’ under the larger model. See Pericchi {1981) for such an approach
in a different context.
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The choice of a response subset offers different problems. Since differing quantities of data
are invelved, the absolute values of the likelihoods are not commensurable and the posterior
distributions will need different normalizing canstants. One way of aveiding this difficulty is to
difference the second derivatives of the log “likelihood” obtained from (3.5) or (3.3) at the
maxima. In the special case of linear X throughout this would produce results similar to
Section 2.2.3 with an entirely diffetent motivation however. It this paper the method of Section
2.3 only has been tried. It has been used on the paint quality data in Section 5.

3.2. A Special Prior for X' in Standard Mulrivariate Linear Calibration

Assume that we are dealing with a prediction observation without replication, ! = f.
Hoadley in the univariate case ¢, p = 1 noted that a particular Student distribution prior for X’
knocks out the numerator of (3.5) and gives a Student posterior distribution for X'. This prior
may not be unreasonable depending on the design of the calibration experiment. The following
theorem extends Hoadley (1970). .

Theorem 3. Suppose a priori X' has a multivariate Student distribution, in our previous
notation T(v—p; (1+ 1/1) X*X), then using (3.4), (3.5), a posteriori (X' — X') has a multivariate
Student distribution, T(o+¢—p; {1+ /m+YTY'Y) ' Y I(G+H) 1), where G =(X"X)!,
H = BS ! BT and where columns of X, Y have been centred post hoc.

Proof.
2(X) oc (1+1/n+ XX X)~F X7

and from (3.4), (3.9)
XX, Y, Y) o [1+ I/n+XTXTX) L X +(Y' - BT XS~ (Y - BTX)] ~@ran?
= [XT{X"X)" ' +BS ' RT X'~ YTS" ' BTX' — XT
x BST Y +YTSTIY + 14 /] T, (3.7)
completing the square, using (2.20), (2.21) and Lemma 2,
=X -R)G+HX -X)+ 1 +1/n+ YIS Y -G +H) R w02,
Now -
YTST Y —XNG+H)X = YIS S ' BT(X"X) ' +BS BT} L BS 1]V
=YTS+BTXTXB) ' YV = YTYTY) 'Y,
by the binomial inverse theorem. The result follows.

Remark 1. The prior assumed for X' is the same as the posterior predictive distribution that
wollld obtain from regarding rows of X as independent N(8,,X,,) with a prior

10,5, X,,) oc | Ly, @112

and (1 —g) = (g+ 1)—2q. This prior although not the Jeffreys invariant prior is exactly the
correct priot for recreating the joint posterior predictive distribution of (X, Y) given X, Y when
that joint distribution of p+4g variables arises from sampling from N(6,E) with a prior

(8, X) oc [E|@* 12,
This may be seen from evaluating the Jacobian of the transformation from
(ﬁ, E] - (I‘.'l'.., B, F, E22‘1 92]
as given for example by Dawid, Stene and Zidek [1973, equation (A.L.2)]. That we can regard

(3.3) as an actual posterior distribution hinges on X being S-ancillary for the parameters of the
conditional distribution of ¥ given X in normal sampling.
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Remark 2. The posterior predictive distribution of Thearem 3 is the predictive conditional
distribution of X’ given Y, X,Y that obtains from sampling from a normal conditional
distribution of X given Y with parameters a*, B* I'* and prior proportional to

[ T¥| @+ 12

This is in accord with Remark 1 since the prior of the theorem exactly recreates the joint
predictive distribution of (X', ¥’) and we see that various routes to the conditional distribution
cohere. This coherence was not noted even in the univariate case by either Hoadley (1970) or
Aitchison and Dunsmore (19735).

Far a Bayesian, in controlled calibration, the design implications of Theorem 3 are
qualitatively self-evident. From a precision viewpoint it may well be desirable to over-sample
in a less probable X set. It is then in principle straightforward to incorporate the prior for X'
into (3.3), even though it no longer reflects the X of the controlled calibration.

Remark 3. If {1 the natural generalization of Theorem 3 is to take the posterior
distribution of X’ proportional to (3.5), defined by (2.5) with /> 1, divided by the same v/2
power of (2.5), but with [ = 1. The mean or mode of this distribution may also be regarded as
the correct generalization of the Krutchkoff estimator to {> 1 in the simple p = g = [ case.
Such a Bayes estimator is consistent as n, [ both tend to infinity. For finite { but infinite # it is
biased but this is hardly the drawback Berkson (1969) implies. We need only loak at his
simulations. The classical estimator is only superior in mean square error for X' extreme relative
to the design X.

4. WHEAT QUALITY DATA ANALYSED
4.1. The Data and Criterion for Prediction

The four (derived) infrared reflectance responses and accurate determinations of per cent
water, X, and per cent protein, X ,, are given in Table 1. For a description of the theory and

TaBLE 1
Twenty-one samples of hard wheat, four infrared reflectance measurements
plus laboratory determinations of percentage water and protein

Observation

number ¥, ¥, ¥, ¥, % Water % Protein
| 361 108 96 243 500 1673
2 3a1 107 93 245 894 1103
3 l62 110 94 241 912 986
4 362 103 94 246 9-06 1141
5 362 104 70 221 [g-02 11-57
] 367 113 75 a1 10-06 9-42
7 366 108 82 233 952 1093
8 360 104 86 236 932 1161
9 362 113 85 229 9-56 8-82
10 340 103 90 242 9-10 1181
11 351 97 88 218 9-14 12-33
12 353 95 73 227 9-70 1293
13 352 97 7 228 9-60 12-69
14 355 96 52 206 10-62 1313
15 357 106 69 216 1004 10-41
14 351 93 6% 222 1600 13-57
17 363 113 88 231 346 9-26
18 343 110 101 2148 8-86 982
19 366 114 79 224 978 946
20 330 96 85 235 9-34 12-85
21 355 97 63 216 12 12-81
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technology of infrared reflectance see Rotolo (1979). The 21 samples have been randomly
ordered so that the last five, observations 17 to 21, form a random sample from the 21
observations and will be used for prediction purposes, that is the relationship between Y and X
is estimated from observations | to 16 and then applied to the ¥-observations L7 to 21 to
obtain predictions for the corresponding five pairs of X-values which are then compared with
their true values. The data forms an exampte of random calibration since both X and Y are
random.

The application of the various prediction formulae are facilitated if over the 16
observations both Y, X are centred

—

]

X, =0, j=1,2

L}
i=1

and

14
—Zlyu = O., _’f = I, reay 4

The adjustments necessary to achieve this were then also applied to observations 17 to 21.
Note that this does not mean that all the 21 observations are centered. Now, since the X-data
in the calibrating experiment have been centered and the same centring applied to X, ,, ..., X5,
in the absence of any calibratory information, zero would estimate the X-values and a natural
criterion for prediction accuracy is

21 31
100 Z (xijhi‘-jjz/ Z xi-, {4.1)
7 =17

i=1

the percentage of unexplained variation.

4.2, The Methods of Prediction

Three basic methods were used to predict X. They were as follows:

(L) From the regression of Y on X (formula 2.16).

(E) Empirical prediction. This method is a multivariate extension of Lwin and Maritz
(1980). Like (L) is uses the parametric regression of Y and X, but derives from that of X on Y by
means of the empirical distribution of X. Specifically if Y’ (4 x 1}, is a set of four responses (any
ane of observations Y4, ...,Y,,) then the prediction for the corresponding X' (2 x 1), is

16
Z WX, xli)T1

i=1

where
w, = f(Y'[xy, xzi]/‘zlf(Y’ | %16 X 2.0

Here f was assumed to be the multivariate normal regression density with four responses and 2
regressers and parameters fixed at their least-squares values.

(LB) The regression of X on Y (formula 2.18). LB here is an abbreviation for Linear Bayes.
Although the estimator can be thought of purely as arising from the regression of X on Y, it has
the property of being Baves under the special prior of section (3.2}, and the property more
naturally extends to the case > 1, as indicated in Remark 3 following Theorem 3. Hence our
preference for the Bayesian terminological link.

In addition, methods L and E were applied to the separate problems of predicting percent
water ignoring all the percent protein measurements and vice versa. This gives methods L', E'.
Noate that method LB automatically predicts separately X without reference to X5 and vice
versa.
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TaBLE 3
The percentage of variation unexplained for
wheat quality prediction

Methad Water Pratein
L -7 -7
L 7 -7
E 68 20
E' 6 25
LB 1-5 17

4.3. The Predictions Compared

Table 3 gives the unexplained percentages of variation in predicting the five wheat samples.
Overall it is evident that predictions are rather good. The best method explaining more than 98
per cent of the variation in X'. From the earlier discussions this implies that there will be little
to choose between methods regressing Y on X and those regressing X on Y, This is indeed the
case. Method LB, the preferred one for random calibration is indeed slightly better than
methed L, that based on regressing Y on X. The semi-non-parametric method E does rather
badly in comparison. This is surprising since a plot of ordered (x;—%)" £~ Xx,— %) against
exponential arder statistics suggests that the marginal distribution of X is far more flat than a
normal and this is a circumstance where one might hope that method E would do better than
LB. Perhaps its use of point estimators of parameters in the predictive distribution of Y’ is its
downfall.

Finally, it is interesting to note that the methods L', E' which take one regression X at a
time tend to fare better than those which consider the two regressions simultaneously.

5. PAINT FINisH DATA ANALYSED
5.1. The Paint Data

A single patch of paint base was tinted with a pigment at three levels (0 per cent, 0-15 per
cent, 0-30 per cent), and the viscosity of these samples was adjusted before spraying to one of
three levels (30, 33, 36 secands in an efflux cup); each of the resulting paints was replicated four
times, giving a total of 36 dry panels.

Each of these panels was measured for optical properties in three ways:

1. Spectrometer measurements of incident light. Measurements at two different inclinations

were used to create three responses, Y, ¥,, ¥; of Table 2.

2. Integrated reflectance with normal incident light, ¥, of Tabhle 2.
3. Peak-height and band-width on a recording goniophotometer, Y5, ¥, of Table 2.

In future it is desired to use a subset of the six responses to predict the pigmentation and
viscosity levels used so as to match the paint.

In order to compare various methods of prediction of X (pigmentation and viscosity) from
Y a random replicate, observations 2, §, 11, 16, 18, 22, 28, 30, 35, was extracted for prediction.
The nine resulting ¥Y’s were to be used to predict the corresponding X; the 27 remaining three
replicates of the 3 x 3 experiment were used to estimate the relationship between X and Y and
to choose a subset of responses. Notice how there is an underlying scale to both pigmentation
and viscosity. In what follows it is not therefore unreasonable to use a criterion for prediction
accuracy which presupposes such a scale.

5.2. Choice of a Subset of Responses

It would be desirable to reduce the six responses to two, to be used jointly for subsequent
prediction of pigmentation and viscosity. With this aim the test for additional information of
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TaBLE 2
Two factors, pigmentation (P) and viscosity (V) in a 3x3
experiment with four replicates and six optical responses

o
=

4 Y Y, Y, ¥ Y

188 350 7540 4094 1010 200
187 353 75-8 40-68 1140 175
188 il 710 40-60 1010 19-8
1-87 Jao-8 770 4057 100-5 175
1-79 324 732 39-83 954 206

1-78 319 729 39-65 1070 19-5
17 296 721 39-15 935 210
173 30-6 725 39-44 930 180
1-63 257 667 3722 93-5 220
1-63 268 679 3789 840 213
1-61 238 629 3736 340 213
1-68 272 672 3815 84-5 150

1-79 335 760 39-09 1020 210
177 313 718 3912 1050 15-8
1-80 318 718 193 1030 20:0
1-78 318 725 3873 101-0 20-8
1-74 305 715 39-31 1630 201
1-68 287 711 3804 98-5 209
7 296 711 3850 99-0 2140
173 285 700 3909 110 208
[-30 210 630 3581 850 211

152 9 439 3565 850 218
1-31 21-2 630 3570 840 225
1-50 106 al-6 3577 850 222

194 358 4.0 380 101-0 19-5
1-89 339 724) 3808 1010 201
1-92 350 730 3793 92:5 19-5
1-92 337 05 3817 830 21-8
I-87 330 710 3718 96-) 2040
1-85 315 685 ir17 91-5 22:5
1-83 3340 00 3783 990 185
1-86 315 68-0 3731 950 201
1-75 278 64-8 36 825 20-8
1-60 246 674 3409 710 21-0
162 244 63-0 M1a 800 21-4
1-62 2340 60-0 3418 860 20-7
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Section 2.3 was used. If it transpired that one could get away with using two responses so much
the better, if not then at the price of a slightly more complicated predictor greater accuracy
would obtain.

In this initial screening of the responses, it was decided to restrict attention to multivariate
linear regression. This avoids difficulties over a non-monotonic relationship of Y on X. Even
though additional non-linear information might be ignored by this process, it might not
anyway be subsequently usable.

The matrix of the quadratic form (2.17) is 2 x 2. If its eigenvalues are both negative then,
whatever X', the quadratic form is negative. Furthermore, both eigenvalues will be negative if
and only if the trace (= sum of eigenvalues) is negative and the determinant (= praduct of
eigenvalues) positive. Table 4 lists both trace and determinant for various subsets of the six
responses when the significance level was 5 per cent. There is only one pair of responses, the
first and fourth which has a negative definite quadratic form, so that discarding variables
Y., 13, ¥, ¥ involves no loss in (linear) information. This pair is subsequently used for
prediction.
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TapLE 4
Test of additional information for every subset pair of six responses at the
3 per cent significance level (quadratic form (2.17))

Response subset Trace Determinant
110060 021 —003
161000 029 —0-03
100100 —014 0-0005
160010 048 —004
100001 059 —002
011000 031 —003
010100 —{-10 —0-01
010010 037 —007
Q10001 048 — 004
001100 —{11 —005
001010 18 —0-08
001061 038 —002
QOOLLO —{03 —002
000101 005 —002
Q00011 059 003

5.3. The Methods of Prediction of Pigmentation and Viscosity

Broadly two sets of methods of prediction were tried, linear methods {L’,L,LB} and
quadratic methods {Q’,QB’}. As in Section 4, thase methods which ignare one of the two
explanatory factors, pigmentation or viscosity, in bath the calibrating experiment and the
prediction experiment are identified by a dash superfix. The linear methods are described in
Section 4.2 and may be found explicitly by the appropriate formulae. The two quadratic
methaods allow a full parameterisation of the three levels of the explanatory factors taken one at
a time. Orthogonal polynomials, x linear —1, 0, 1 and quadratic —1, 2, —1 were used
respectively.

{Q'). The left-hand side of (2.8) was plotted as a function of pigmentation and then
separately for viscosity in x steps of O-1 with &7 = (x, 2— 3x?). The matrix S is the residual sum
of products after fitting linear and quadratic pigmentation (or viscosity). The minimum of the
resulting function was taken to be the estimator {Q°). This was done in turn for each of the nine
pairs Y.

{QR'). Here QB stands for Quadratic Bayes. By analogy with the linear Bayes case the
denominator of {3.5), with £ replacing X', was plotted as a function of x in steps of 01 where
ET = (x,2—3x%) asin(Q'). From (3.7)it is easy to see that the denominator of (3.5) diffets from the
left-hand side of (2.8) in (i) the divisor ¢%(&) and (ii) the matrix of the quadratic form, BS ™' BT, is
augmented by (X" X) ™" in (3.5). This method is a slightly ad hoc alternative to using either (a)
the integrated likelihood (3.5} in its entirety or (b) (3.5) modified by dividing by {a*(x})"'? the
appropriate prior factor from the Hoadley prior.

5.4. The Predictions Compared

Table 5 gives the percentages of unexplained variation aggregated aver the nine
observations of the prediction experiment using the responses ¥, Y, (¢f. formula (4.1)).
Inspection of the raw data emphasizes that the effect of pigmentation on Y, is far from linear
and is not manotonic even. Although all the other quadratic effects are not significant, it is
rather a surprise that Q' does so badly in predicting both pigmentation and viscosity and quite
remarkable how well the quasi-Bayes method QB’ performs. It does hardly any worse than the
linear method LB with viscosity, where linearity is appropriate, and is able to utilize the
quadratic relationship with pigmentation. In fact Q' was perhaps worse than indicated. The
plotted function generally had two local minima and the global minimum for the fourth of the
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TABLE 5
Percentages of unexplained variation for the paint data

Method Pigmentation Viseosity
L 24 28
L 21 28
LB 21 20
Q 25 5
QB 13 21

nine predictions of pigmentation was — 1-4 with a second minimum at 0-3 and a 95 per cent
confidence region of — 19 to 0-7 (true value of zero). In Table 5, instead of — 1-4, the mid-
interval value of —(0-6 was used. Otherwise the 25 per cent unexplained variation for this
method would have been 52 per cent! See the next Section for more details.

As one check on the computations for ', QB', the quadratic parameter estimates were set
to zero and the sum of products matrices adjusted accordingly. The plots then obtained gave
minima which corresponded to L' and LB respectively. The plots were reasonable symmetric
about a single maximum. The confidence interval from such a plot for L' is adequately
approximated by computing the scale factors of the univariate student distribution of Theorem
3. These range from 4-4 to 4-8 over the nine values of ¥’ for pigmentation and also separately
viscosity. Since the degrees of freedom are 23, the estimated variance may then be obtained by
dividing by 23, giving a standard error of approximately (-5,

Finally it may be noted that estimates LB are proportionat to L', a consequence shown in
Section 2.4, In fact the LB estimate = (-77 x the estimate L', the squared multiple corretation
of O-77 being coincidently the same to two decimal places for pigmentation and viscosity.

5.5 Confidence Intervals for Prediction
Figs 1, 2{a) and 2(b} relate to giving confidence intervais for the true pigmentation values of
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FiG. |. Discretized posterior probabilities for the quadratic model for observation 4 (x) and 5 (Q).
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Fia. 2. Plot of the left-hand side of (2.8): continuous curve, observation 4; dotted curve, observation 3. {a) Quadratic
madel. (b) Linear model.

observations 4 and 5 of the nine observation prediction set (numbers 16 and 18 of the original
listing). The true values are zero for each of these two observations. Pigmentation is being
predicted completely ignoring viscosity measurements.
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Fig. 1 gives posterior probabilities discretized in intervals of 0-1 for the quadratic model
described under (b) of Section 5.3. That is, it has “linear” prior assumptions. Notice that whilst
the probabilities for observation 5 constitute a smooth unimodal distribution, those for
abservation 4 are somewhat bimodal. Highest posterior density intervals easily obtain from
the plot. Similar “confidence intervals” under LB, the regression of X on Y, have not been
plotted but may be calculated from Theorem 3. The means are 0-77 times the L’ predictors,
namely —0-20 and —0-66 from observations 4 and 5 respectively. Then from a univariate
student ¢-distribution on 25 degrees of freedom, we have the symmetric 95 per cent “confidence
intervals” {—1-05, 0-65) and (—1-52, 0-20},

Figs 2(a) and 2(b) are plots of the left-hand side of (2.8} for quadratic and linear maodels
respectively. Thus confidence intervals for the two methods ¢ and L' result from taking all X'
values less than {(q/v) F¥y). For 95 per cent intervals y = 005 and since ¢ = g then v = 23, 24
for ' and L’ respectively. Hence the threshold values are 0-30 and (-28. Since the Q' curve is
bimaodal for observation 4, two disjoint sets of points constitute the confidence “interval” ! The
curve even favours some points outside ( — [, 1) more than those inside. However sanity returns
with observation 5 and this is far more typical of the behaviour for other observations not
plotted here. Although observation 4 is rather a maverick it seems to be treated more
reasonably by the Bayesian method: just compare Figs 1 and X(a). Intervals from Fig. 2(b) are
rather wider than those from LB’ given above.

6. CoNCLUSION

It is possible to draw some tentative conclusions from the theoretical results of Sections 2
and 3 and the applications of Sections 4 and 5. In random calibration, one should regress X on
Y to predict X in the future. The semi-nonparametric approach to this (Section 4) did not fare
well. Furthermore, a controlled calibration experiment will typically have X-values chosen to
cover the range of future values. This implies, Section 5, that the linear regression of X on Y is
still superior to that of ¥ on X; and the generalization to polynomial dependence is best
implemented using the Bayesian approach of Section 3, regression of X on Y being the linear
special case, rather than the classical approach of Section 2. The classical confidence regions
seem unnecessarily wide in the polynomial case. They can also be disjoint intervals.

Response variable selection, by the classical procedure of Section 2.4, presented no
difficulties or evident flaws as applied in Section 3, though Section 3.1 might be worth
developing further. The applications suggest that one should predict X one variable or factor
at a time. This is necessarily so in the linear case where the regression of X on Y is superior.,
Finally marginal monotonicity of Y versus X is not necessary in multivariate calibration, even
though it is essential for univariate calibration.
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APPENDIX
Using a canonical form of model (2.1) and (2.2) centred and scaled as in (2.3), the
distributional result (2.7) is developed. Let P be an orthogonal p x p matrix of eigenvectors of
XTX; if we define A = diag(4,,..., A,) to be the px p diagonal matrix of eigenvalues of the
correlation matrix then
PTXTXP = nA,

where I 4; = p. Limiting arguments as s — ox are easy to incorporate since A may sensibly
remain constant.

At times in deriving results it is simpler to work with the canonical form. Since X is fixed we
may multiply both sides of (2.1) by a # x n orthogonal matrix Q so that

Zl =nta'+e]
Z, =t AtAte, (ALI)
LZ,=¢,

I
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where Z,is¢x1,Z, ispxgand Z, is(n—p—1)xg where YT Q = (Z,ZTZT) with A = PTB
Strictly E - QTE but since Q is orhtogonal and E is normal 1x g rows of ele,, e, are
independent identically distributed N(O, ) as before. As each observation in the prediction
experiment (2.2) has the same mean, this is particularly simple to reduce to a cancnical form.
The ! x ! orthogonal matrix Q' may have its first column proportional to the unit vector and
the {—1 other columns any orthogonal set of vectors orthogonal to the unit vector. If
YT =(Y,... Y} then YTQ' =(Z,,Z5") and

Z7 = Ba"+ LT B)+ef

Z, = ¢,
where Z') (s gx 1 and Z is ({—1) x g. Here again by virtue of orthogonality of ', error
structure is preserved and Z, and Z!, consist together of (n—p+1—2) rows of independent

N(O, I') random vectors. They provide independent information for inference about I
The first two equations of (A.1.1) may be written as

(A.1.2)

Z§ =ntal+el
ZL = (”11}%a?+e?, i=1,..,pn
since A is diagonal. The least squares (maximum likelihood) estimators of &, A are given by
a=n"*Z, & =@ ¥YZ, i=1,.p

where &~ N{o,n ' T') and &~ N(a, (nd) ' T) and &, &, ....&, are mdependent Now B = PA
and hence &+ATPTE~ N{a+BTE_,, (n '+n Ttz 52/,1 » where d; = pl £. Subtracting from
(A.1.2) gives (2.4),

(V' —a—BT )~ NO.T( " +a” " +ETXTX) " §))

Finally we may utilize the independent estimator of I to obtain the predictive sampling
distribution of ¥’ consequent on joint sampling of Y and Y’ for fixed X, X". Let 8 be the g x ¢
sum of products matrix obtained from Z, and Z/, where

S=21Z,+2,"Z,.

Thus 8 is the pooled residual sum of products matrix from the calibration and prediction
experiments. This under our normal assumptions has a Wishart distribution with scale matrix
I' and degrees of freedom s+¢—1 where v = n—p+1{—g— 1 which we shall denote as

S~WMo+g—1;T), wherev=n—p+Il—g—1. (A.1.3)

Adopting the definition of multivariate student distribution given in Section 2.1, an adaptation
of Dawid (1981), the following lemma follows from Dickey (1967).

Lemma 1. Let a g x g symmetric matrix V have a square root V¥ so that V = V¥ V#T, For
convenience of notation we may assume a symmetric square root. If

V~Who+g—1; 1),
and independently
X~N(O,]1),
then
(VH X ~T(v; 1)
Applying this lemma to (2.4) and (A.1.3), (2.7) follows.
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DiscussioN oF DR BRowN'S PAPER

Mr T. C. AItcHisoN {University of Glasgow): Since a problem of calibration, namely estimating foetal
age from an ultra-sonic scan measurement early in pregnancy, was the first taste of statistics (pure or
applied) T ever had, it is really a considerable pleasure to be invited to propose the vote of thanks to the
simultaneous presentation of both a sampling theary and a Bayesian approach to the multivariate
extension.

Certainly this paper and that of Hunter and Lamboy (1981) in Techrnometrics has reopened and
extended discussion of the calibration problem bringing with it further argument over the use of inverse
regression in calibration as suggested by Krutchkoff (1967). For the random calibration context this is
undoubtedly a sensible strategy but in the controlled calibration case the issue is less clear cut. In fact,
even for a Bayesian, there is an apen question as to the choice of prior to make since Hunter and Lamboy
adopt a prior specification which results in the posteriar calibration distribution #(X'/X, Y, Y') being well
approximated, under mild conditions, by a distribution where expected value/mode is the maximum
likelihood estimator of X' and any appropriate HPD interval for X’ is exactly that attained by the
sampling theary approach using Fieller's Theorem.

Thus we have Bayesian “justifications” for both the standard calibration and inverse regression
approaches but in my opinion, however, this is not really the issue—except for the Bayesian in his choice
of prior. Personally I can find no sympathy for the approach of Krutchkoff to treating the controlled
calibration problem as a regression of X an V for the production of point or interval estimates of X' In
the case of f>> 1 (i.e. replicates ¥, ..., ¥, at the unknown X"} only a very canvaluted argument could effect
interval estimates for X' from a sampling theory viewpoint and indeed the Bayesian searching for a
tractable posterior distribution for X' would require different values of i—see Remark 3 on Theorem 3.
Perhaps before the computing age there was a need for tractable and simple posterior distributions but
surely the dominant ingredients of any solution, Bayesian or otherwise, should be a reasonable and
cansistent set of assumptions.

Anather issue well warth clarifying is that raised by the author in Section 1.2 when he refers to the
conditional sampling approach of Scheffé (1973), and in a very clear paper by Lieberman et al. ([967).
This really directs attention as to the use to be made of the calibration curve. Are we performing a one-off
calibration for a single X’ value or are we going to use this same curve for a succession of X values (i.e.
multiple future use of the curve)?

In my experience of calibration in estimating foetal ages from ultra-sonic measurements and in
estimating true ages of organic material from radio-carbon dates it is the multiple use of the curve that is
maost common. So perhaps the conditional sampling approach is not really tackling the same problem as
this paper since the methads of Scheffé er al. are aimed at rackling the multiple use problem. I am
certainly very interested to find out what a Bayesian strategy would be to this and indeed whether it
would be any different from that outlined for single use in this paper.

On this issue and the other types of problem which go under the umbrella of calibration I would like
to direct attention to part of the discussion on the Hunter and Lamboy paper given by Rosenblait and
Spiegelman as an excellent example of the input of applied statisticians to the academic statistical world.

On another practical note in the paint example the author refers to the purpose of the calibration as
being to maitch the “new batch™ of paint—presumably to ane of a set of standard batches. However, I feel
that the presentation of either marginal intervals or marginal pasterior densities for the components of X’
may not give an adequate answer to this problem. In this case of p = 2 abviously the joint interval and/or
posterior density will provide a better answer but for the case of p23 (if it exists!) the difficulty of
presentation of a multivariate calibration cannot be overlooked. At least for the sampling theory case the
use of some form of simultaneous confidence intervals for the companents af X' may go some way to
provide a middle ground between the marginal and joint intervals.

I was delighted to see Sections 4 and 5 in this paper concerned with a comparison of various
calibration techniques on two interesting data sets. John Anderson in proposing the vote of thanks te a
comparison of discrimination techniques on a real data set by Titterington et af. (1981) was surely carrect
when he said that this was a much braver approach than simulation but fraught with difficulty. Any
example chosen may have some strange and atypical features which make generalizing conclusions
rather a perilous affaic. The paint example of this paper does leave something to be desired with respect to
model choice (and comparison) since the design appears rather inadequate on the hasis of only nine
distinct points in the two-dimensional X space. There may also be problems with potential outliers such
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as the Y, compaonent of observatian 33 and the influence of any outliers on multivariate calibration may
indeed be rather strange. Further I think that, in this example, it is unfortunate that the author has not
included the empirical approach of Lwin and Maritz in his comparison.

Lastly on Sectien 3 the choice of comparing “confidence” intetvals for X' only based on the two ¥
compaonents is perhaps questionable both in terms of whether only one Y component might be more
effective far calibration, and in terms of a different assumption of sampling mechanism in comparing, say,
methads L and LB. There also seems to be a question of an extra parameter in the L' model aver the
LB—two simple linear regressions for L' against one multiple regression on two variables for LB.

This latter problem is only a small glimpse into the Pandora’s box of strange properties of interval
estimates in the multivariate calibration context particularly when g>p. Even if there is “marginal”
monatonicity for all pairwise components of Y with X thete is no guarantee of “nice” interval estimates
for X' if there is, in some sense, contradictory information ahout X' in the companents of Y'. Great care
should certainly be taken in setting up any multivariate calibration “curve™ and in the monitoring of
future ¥’ for their typicality with the Y observations used in the construction of the calibration curve.

Finally, may I say that one of the pleasant consequences of having to prapose this voie of thanks is
that I read most of the papers presented to the RSS over the past few years at the one point in time and
was particularly struck by two. Namely, those by Box (1980} trying to bring sampling theory and
Bayesian methods closer on an applied front and by David Cox (1981) emphasizing the need for a better
balance between the practical and the mathematical in the world of statistics. This paper I believe is one
good example of how the ideas of Box and Cox can be brought together to, dare T say it, transform a
rather theoretical piece of mathematics into a useful technique for the applied statistician,

I did very much enjoy reading and thinking about this paper and have great pleasure in proposing the
vote of thanks.

Dr 1. R. DUNSMORE (Uiaversity of Shetiield): Tne masterly presentation today complements the subtle
balance of a paper which ranges from delicate dealings with matrix manipulations through to the less
mathematical but more practical problems of real data analysis. The problem seems to be fairly topical at
the moment. Hunter and Lamboy (1981} initiated a discussion at the annual meeting of the American
Statistical Association. There, however, the concentration was on the Bayesian analysis in the univariate
case.

I'should perhaps say that it was at a rather late stage in the progress of this paper that T was asked to
second the vote of thanks. It does however seem appropriate (at least for the Bayesian aspects of the
calibration problem) that the propaser and seconder should be named Aitchison and Dunsmore.

Artiving late on the scene and having been away from the calibration problem for seme time I found
that [ was tather like a mountaineer returning to the rock face after an injury. I found myself somewhat
cut of condition for the rigours of the foothills of the Wishart ranges, the multivariate Student mountains
and the central massif of the matrix-T'. In scaling these peaks therefare [ tock the easy route and used the
ropes of previous climbers (namely the original referees) in the hope that they had ensured that the route
through the technical details was valid.

I will restrict my comments on the theoretical aspects of the paper to the Bayesian approach evolved
in Section 3 for cantrolled calibration. Acknowledgement should, I think, be given to Geisser (1965), who
derived a form of L{E), namely the basic predictive distributions n(¥'| Y, &, X} of ¥’. However the form
given here in (3.5) in terms of ¥' and 8 (through 8) is more readily usahle.

Far the 1> 1 case in the standard multivariate linear regression model with £ replaced by X', problems
can accur which are slightly glossed over in Remark 3 on p. 299. The main issue lies with the prior
distribution of X'. In the paper the same prior is used for general ! as for I = 1. Since however that prior
was chasen for mathematical convenience, for consistency of criterion we would need ta specify a
T{v—p; (1/l+ /X" X) prior in the general case. This leads to problems similar to those noted in
Aitchison and Dunsmore (1975, p. 198) in the p = g = t case. In particular the prior depends on the
feature ! of the future experiment. Also, for example, the prior variances of individual components of X'
decrease with L Use of Brown's law on p. 290, which specifies that “ . . if the procedure is obviously
suspect in some circumstances then the solutions may be far from ideal in the other cases where there is
no obvious flaw”, presumably leads us to question the use of this prior even in the case { = 1.

Hunter and Lamboy (1981} proposed a different stand on the prior assumptions, especially with
regard to independence of the parameters o, B, &. 1 wonder if Dr Brown has investigated whether their
procedure produces much difference from the practical point of view in the multivariate case.
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Following Remarks 1 and 2 on pp. 298-299 I would like to assure IDr Brown that Ajtchison and
Dunsmere are coherent—the corresponding result in Remark 1 for the univariate case was effectively
noted in an unpublished report of mine ([97Q).

We now turn to the two examples giver in the paper. They illustrate the theoretical aspects admirably
although they leave many questions unanswered from a data analysis point of view, especially with
regard to the apprapriateness of the model. For example, little mention is made of narmality checks for
the underlying model. Indeed in the paint example some of the y-variables look palpably un-normal, and
the assumption of homogeneity of variance over the different (P, V)-groups merits consideration. My
main criticism here concerns the lack of “answers™ however. The purpose of calibration is te calibrate,
and so provide posterior or predictive distributions, or perhaps interval estimates, or even just point
estimates in the extreme. The only results presented for the wheat quality data are in the form of a
eriterion of prediction accuracy. For that data the results appear to be incredibly good. However the
criterion Is somewhat questionable, not the least in terminalogy, since it is quite possible to have, for
example, 250 per cent of unexplained variation.

With the paint example an alternative approach would be to view the problem within the framework
of classification or discrimination or diagnosis models. This would ignore the underlying scale to both
pigmentation and viscosity measurements and restrict the possible predictions, but less would need to be
checked in the way of linearity assumptions in the model.

I'am sure that we have not heard the last of calibration, nor would Dr Brown claim his paper to be the
final word. T only hope that this paper induces as much discussion and further work as the previous
airings of the topic have done in the past. Returning finally to the mountaineering analogy T feel that we
are like climbers who have set off up the rock face. From the first night bivouac after the initial univariate
climb, this paper has enabled us to advance with great care up the long multivariate face. However, the
massive amount of modelling assumptions incorporated into the analysis leaves me with worries that
perhaps we have only succeeded in reaching an overhang and that the way ahead is hidden from view.

It is with great pleasure that I second the vote of thanks.

Professor A. S. C. EHRENBERG (London Business School): I have three major worries with the applied
side of this paper: the use of small data sets in Sections 4 and S, the use of split-samples there, and the
general specification of the calibration problem.

Starting with the least important, [ am sorry that Dr Brown has fallen for the modern tendency of
making a theoretical paper look more applied by pushing some minuscule sets of data through the
formulae. What is worse, he implies that one could judge his methods from samples of less than 10
readings.

Next, and of greater importance, is the mistaken use of split-samples. This is the idea (unfortunately
not an uncommon one) that having fitted a model to a random sub-sample of a given set of data, one can
then test the model on another sub-sample from the same data. But there can be no difference between
two random samples from the same population other than for sampling errar. That is what random
sampling is all about! One can see this more clearly (if this is needed) by visualizing two random samples
of 10000 each from the same population: Whatever we do to Sample A, we will get the same answer when
we also do it to Sample B. This does not test the fitted model. (I note that many statisticians
unfortunately think of prediction in the same trivial way as being just about another sample from the
same population, especially in the context of regression, as here.)

Thirdly, and most important of all, I believe that Dr Brown's basic specification of the calibration
problem on p. 287 is wrong, from a practical point of view. It is all put as if one had to face only a single
sct of data in X and Y, with the X following some supposedly meaningful statistical frequency
distribution.

Instead, what ane does in any well-designed calibration study is to arrange things deliberately {as Dr
Brown himself says but then ignotes) to cover the relevant range of values of X, say at j different levels. In
his blood plasma example, he refers to nine such different sets of data, deliberately chosen to lie at or
near certain values. (In the controlled case, X would be made to lie “exactly” at certain chosen values,
In the uncontrolled case the choice of the word “random” is, I believe, very unfortunate; the data may be
irregular and uncontralled, but not “random”).

In general one would therefore take sets of n, readings (X, ¥}) at or near each of the | different levels.
(In principle the n, should first be considered as being large, to separate sample problems from model
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specification.) The data then reduce down to j sets of mean values (X, ¥)

High: X%
M edium: .
Low X. ¥

JI
together with the correlated scatter of the individual X, ¥ readings in each of the j data sets. (If the
scientist is not able to select canditions yielding “High”, “Medium” and “Low™ values of X and ¥ he is
hardly ready to calibrate Y against X.}

The main calibration problem in practice then concerns the relationship between the f sets of means
X, ¥. This relationship is symmatrical, whether X is controlled or not. This is quite different from the
asymmetrical problems considerd by Dr Brown.

i)

Professar J. B. Copas (University of Birmingham): [n many statistical situations Bayes procedures
might be viewed as rather exotic alternatives to standard methods, but in the topic of tonight's paper a
random distribution for & or X' is an essential and inescapable ingredient of the problem. Indeed such a
distribution makes practical sense since one is not interested in calibrating just one particular value but in
developing a formula for calibrating a whole range of values which are likely to occur in the future. It is
reasonahle to suppose that these future values will arise according to some frequency distribution.

One consequence of randommness in X' is that, for random calibration data, least squares is no longer
admissible if the number of Y’s exceeds 2 (Stein, 1960). Least squares tends to overpredict: one is better
off shrinking the prediction towards the overall average. Dr Brown mentions the possibility of this in
Section 1.1, but does nat pursue it in his examples. For instance, a graph of percentage water for cases
17-21 in Tahle 1 plotted against its LB prediction shows clear evidence of overprediction, and the
“percentage of unexplained variation” is reduced slightly if a Stein-type shrinkage is applied {1-30 to 1-47,
cf. Table 3). The averprediction seems more than that implied by the Stein formula, which raises the
question of whether the 4 ¥s are defined in advance or selected from a larger set using a stepwise method
on the same data.

The importance of the distribution of X’ is illustrated in Fig. D! for the simplest case of bivariate
narmal data. Although the regression line, and ¥, are exactly the same in the two situations shown, the
calibrations X* are quite different just because of the different distributions of X*. Thus whilst Dr Brown is
right to emphasize the distinction between random and controlled data, I would go further and say that
unless we are prepared to say something about the distribution of X” in future cases the problem simply
has no solution.

Supposing that Y given X' is N(x+ X', ¢7) but that X has some arbitrary distribution, it is easy to
show that

i

Y —u

i
where p(¥") is the marginal distribution of ¥". If 62 is small ar p(¥") is flat (very dispersed data), this is just
the regression line solved backwards (method L). If p(¥') is log-concave the curve of X" on ¥ is fAlattened,

perhaps to the regression of X' on ¥’ {methad LB).
As a special case, suppose that both X {old data) and X’ (new data) are normal, so that

E(X|Y) = py+d(Y —py), 2

E(X'|Y) =

d
+02@{logp(}")}, (1)

and
E(X'| YY) = px+d¥ (Y = pty). (3)
If the distribution. of X’ is only slightly displaced from that of X, it is easy to show that
Hr=py+dAC, d*~d(1+ BC),
where
A = change in F(Y), B = proporticnal change in var(Y), C = (1—#})jr?
r being the carrelation between X and Y in the calibration data.
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E(Y|X)

Fig. DI

This suggests a three-stage procedure. Initially, calibrate using (2), i.e. LB. After several future values
of Y’ have been observed, manitor the changes in the mean and variance of ¥ from those of ¥ and
update the slope and intercept giving (3). When a very large sample of ¥ has accumulated, use a density
estimation method to estimate the logarithmic derivative and hence the optimum calibrator in (I).

Dr H. P. Wynn (Tmperial College, London). [ want to make a few comments about one of the
impartant issues raised by this paper. This is the distinction between controlled and random experiments.
Think of all possible kinds of experiment that could be performed on two variables X and Y. We could
just observe X, just observe ¥, observe random pairs (X, Y,), observe ¥ on controlled X or X on
controlled ¥. We could also consider twao-stage experiments in which X (or Y) is observed and then,
using information from this experiment, observe ¥ {or X). With costs attached to the different
experiments the whole prablem can be set up as an optimization problem. It is often assumed that the
solution is ta ohserve Y on controlled X ar some other controlled experiment. However, simple examples
show that a typical solution involves mixtures of controlled and random experiments.

The distinction between the two kinds of experiment has a long history in the philosaphy of science.
John Stuart Mill calls random experiments “spontaneous™ and controlled experiments “artificial”. A
discussion of seme of this philosophical background with a modern example will appear shartly.

Mr P. I. 8cott (Imperial College, Londan): I have just a couple of comments to make: Firstly, in the
wheat data analysis, the first sixteen observations were used for calibration and the remaining five for
prediction purpases. T would have liked to have seen these predicted values to see how the unexplained
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percentages of variation given in Table 3 (p. 301) broke up; for instance, in the empirical predictions, were
the large values in the unexplained percentages of variation due to a large difference in one of the
predictions, or in a gencral under- or over-prediction of these values? Secondly, in the derivation of the
empirical method one has to estimate the marginal density of the X's. In this derivation this marginal
density is estimated by putting delta functions at the observed values of the X's. Might not better results
be possible with some other method of density estimation, for instance one based on a kernel method?

Dr T. Fearn (Flour Milling and Baking Research Assaciation, Rickmansworth): As the supplier of
the wheat quality data [ am relieved at the author’s conclusion that componentwise regression of X on ¥
(to use the notation of the paper) is as good a method of analysis as any. This is the simplest and most
natural way of tackling the problem and is universally adopted. With such a precise relationship it does
not seem to matter what approach is adopted, I am only surprised that Dr Brown has managed to find a
method (E) which fails.

Because the data, having once appeared in the literature, are likely to be reanalysed [ would like to
record the exact nature of their “random” status. The sampiles were not explicitly chasen on the basis of
their protein or moisture contents but they would have been chosen to include a4 good range of wheat
varieties. They would not therefore be in any sense a random sample from the throughput of the
laboratory although there is some “randomness™ in both variables. The flat marginal distribution of X
noted in Section 4.3 is in part a consequence of this selection. Given the way the data have been used,
with a randomly selected prediction sct, these comments do not affect Dr Brown's analysis or
conclusions.

It is a common, and desirable, practice to select the calibration samples to fatten the marginal X
distribution when calibrating these instruments. Any bias iniroduced by such selection combined with
the regression of X on Y is more than compensated for by the increase in the precision of estimation of
the regression.

If the selection is modelled probabilistically in the following rather idealized way it is possible to
quantify its effect. Suppose (x, y) have a bivariate normal distribution but that samples are selected on the
basis of their x value with probability proportional to 1/p(x). If we ignore problems with norms this gives
a uniform distribution for the selected x. The p.d.l. of x conditional on y for the selected samples is
propartional to p(x| y)/p(x} which in turn is proportional ta p(y | x). It follows fram the form of this density
(as a function of x) that the regression of selected x on yis 1/8 where f is the regression of y on x. Thus the
effect of flattening the marginal x distribution but still regressing x on v is roughly the same as that of
doing the regression the other way round.

The following contributions were received in writing after the meeting;

Professor G. A. BARNARD {University of Essex): I was glad to see Minder and Whitney's marginal
likelihood approach referred to, although I was sorry it was not further discussed. It is one of the most
intuitively appealing solutions. In the case where the estimated slope of the regression fails ta differ
significantly from zero, it tells us that large positive and negative values ate quite as plausible as moderate
values, and that no single point estimate is at all reasonable in this case.

Minder and Whitney had difficulty in getting their paper past one referee, who noted the possibility of
not having a single point estimate and went on to say “it is the statistician's job to come up with an
estimate, no matter what the data are™

Given data, it is the statistician’s primary job to express what the data say—and if this amounts to
nothing, then he should say so.

Dr Brown seemed to come close to demanding that the data speak in prescribed forms when he spoke
of the unpleasantness of cases where no simple confidence sets could be given for a ratio, or of the
difficulties in his Section 2.2 (p. 293) when g>>p, or when two probabilities are needed to give praper
expression to the uncertainty of the conclusions. The fact that we may have been drilled in the past into
expressing all uncertainties as single P values gives no excuse for continuing the practice.

In relation to the problem when g>p, we should remember that an assertion with 95 per cent
confidence that € is true means only that, unless an event of probability 5 per cent has occurred, then €
must be true. If the data make it clear that an event of probability 5 per cent really has occurred, there is
no reason to suppose that C is true,
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Professor J. M. BeErNaRDO (Universidad de Valencia): I have truly enjoyed this important,
stimulating paper. [t provides a unified review of a large amount of previous work on the common
problem of calibration and roughly shows, ance more, that sampling theory recipes are, at best, a limiting
case of a sensible Bayesian analysis. The attention to comparative studies, however, lead Dr Brown
to concentrate on the estimates of X given ¥ and the data rather than discussing the entire predictive
distribution p(X|Y, data) which, as he mentions, is the natural answer to the problem. posed.

I certainly agree with the main conclusion in the random variables case; one should regress X on Y to
predict X in the future. I wonder however to what extent the same type of analysis may be usefully
extended to the non-linear in @ case, to include, for instance, logistic models. At a more specific level, [ do
not find appealing (although it is mathematically ingenious) the selection of an ad hoc prior for X' [
believe one should try, either to describe personal beliefs, or to use a general systematic methodology to
specify reference priors {(Bernardo, 1979).

When the variables are controlled, they are usually set to a finite number of values. If, as Dr Brown
rightly suggests, it is better to predict X one variahle at a time, multivariate calibration in the controlled
case becomes mathematically identical to discrimination {or medical diagnasis, or pattern recognition as
the author reminds us).

A very welcome feature of this paper is the inclusion of sets of rough data which are then analysed
according to the methods described. This allows the reader to compare the results with other approaches
he may like to try.

I have analyzed the paint finish data of Table 2 using a Bayesian normal diserimination pracedure
(Bernardo, 1978), similar to that proposed by Aitchison and Dunsmore (1975, Chapter 12) but with a
different reference” prior specification. The results are obviously probability distributions over the
possible values of X, the goodness of which may be assessed with a proper scoring rule (Savage, 1971). If
one insists in having a point estimate, on may use the mean or the mode of such distribution.

The predictive distributions of the nine observations randomly chosen by the authot to compare the
methods he analyses, using the other 27 ohservations as data, are given in Table DJ.

TabLe DI

Ghservations P IV PriP=0 Pr(P=1) Pt(P=2) EP) Pr(F=0) Pe(V=1 Pr(lF=1 K
2 0 0 166 (0-834 0000 0834 0-008 992 0000 0992
5 0| 1-000 0000 0-000 0-000 Q0-794 G000 0-206 0412
11 0 2 3991 Q001 0007 0150 0-004 0737 0259 1-255
16 I ¢ aals 0-987 0-000 0987 0-481 G518 0001 (538
18 1 0692 0-308 000 0-308 0-908 Q36 056 0148
22 [ 2 0001 0999 3000 0999 0-000 0000 1-000 2:000
28 20 0014 0-000 09386 1-672 (948 0049 0003 0055
10 21 Q003 0004 0992 1-988 004 Q988 0008 1-004
35 102 0000 0000 1-000 2000 0000 Q000 1-000 2000

The results where abtained with a computer program, written to be used routinely in medical
diagnosis, by a student of mine, José D. Bermudez. The unexplained percentages of variation, using as
estimates the distribution means are found to be 80 for pigmentation and 194 for viscosity, clearly better
than those obtained by the methads considered in the paper (cf. Table 3).

Yet an alternative analysis of the same data could have been perfarmed using logistic regression; [ do
not have at hand, however, a computer program to do it.

Professor . R. Cox {Imperial College, London): This seems to me a very impressive paper. A crucial
aspect in applications is often the stability of the calibration curve in time: how often is recalibration
needed, and how can checks of stability be incorparated into the routine use of the procedure? Has Dr
Brown any comments?

As in other aspects of statistics, sweeping statements ahout what happens in practice deserve
scepticism: they often do less than justice to the rich variety of the real world! Nevertheless, [ am
unconvinced about the wide practical appropriateness of the random model, especially that with the
same distribution for future values as used in the calibration. This is partly because often sensible
calibration will be dane over a rather wider range likely to arise in future use. This might seem to lend
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suppaort to the “regress x on y" approach, but, as Mr Aitchison stressed, a more explicit consideration of
the way the results are to be used seems necessary, Here are three possibilities:

fa) is the true x outside some tolerance limits? Is a further test on the same individual needed?

(b) a number of individuals are measured and then some simple comparisons made, or more
generally the resulting estimates put through some further statistical analysis, only qualitative
contrasts being important; .

{c) a number ofindividuals are measured, possible an different pieces of apparatus or even in different
laboratories, and then contrasts of individuals examined, absolute values now being important.

In Case {b) the precise calibration formula will often be unimportant. In Case (¢) the “classical”

approach seems indicated, in the absence of very specific priar knowledge. In Case (a) the form of the
calibration curve near the critical values is clearly af central importance.

Professor M. De Groot (Carnegie-Mellon University, Pittshurgh): I very much enjoyed reading this
paper by P. | Brown. Part of this enjoyment, T must confess, was due to the somewhat unwholesome self-
satisfied pleasure I derived because Bill Davis and I had not long ago worked on similar prablems (Davis
and DeGroot, 1982). The similarity between Dr Brown’s autlook and ours is substantial enough to be
reassuring to us (it is always reassuring to find other good statisticians are thinking along the same lines
that we are), while the overlap between his results and ours is small enough not to be embarrassing,

Davis and I, like Dr Brown, also considered calibration problems in which X, and Y, are vectors of
arhitrary dimensions, also assumed normality, and also distinguished carefully between controlled and
random calibration. However, our work is more limited than Dr Brown’s in that we considered only a
single observation Y' that was to be calibrated at an unknown X' and we restricied ourselves to the
Bayesian approach. On the other hand, our work is more general than Dr Brown’s in that we considered
a 2 x 2 table of models in which X, ..., X, might be either all controlled or all random and, separately, X’
might also be either controlled or randam. Furthermore, we cansidered problems of prediction as well as
problems of calibration. Finally, and this was our original motivation, we considered problems in which
the experimenter is not sure which one of several multiple linear regression models is correct, i.e. in which
he is not sure which components of the vector X, actually appear in the regression function with non-zero
coefficients.

Here we have been somewhat mare formal than Dr Brown. When he briefly discusses such problems
in Section 3.1, he presents a few somewhat arbitrary procedures far comparing models, such as
comparing the maxima of the densities obtained under the different models or comparing the posterior
probabilities obtained by integrating these densities over conveniently chasen regions. Davis and 1
formally develop posterior probabilities of the different models and perform prediction and calibration
by using appropriate weighted averages based on these probabilities.

The examples in Sections 4 and 5 of Dr Brown's paper provide a fascinating and useful finish. Where
Davis and I contented ourselves with the calculation of various posterior and predictive distributions, he
has tried out his methods, looked at some numbers, and reached some tentative conclusions which
appear to lend support to the Bayesian approach. I congratulate him on an interesting and stimulating

paper.

Professor D). V. LINDLEY (Somerset): The Bayesian paradigm applied to calibration is straightfor-
ward. What is the random quantity of interest? Here it is X'. What is known? Here the dataare Y, X, Y. [t
is therefore necessary to calculate the probability of the random quantity given the data: here
p(X Y, X,Y). How is the calculation to proceed? By use only of the calenlus of probabilities. Here, by
Bayes' theorem,

pXY, X, Y) oo p(Y'| X, X, Y) p(X' X, Y)

and, if the experiment is controlled, (X, ¥) will give no information about X', so the last factor is simply
p(X'). The other factor on the right-hand side is p{Y', Y | X', X)/p(Y | X, X"), and X’ may be omitted from the
denominator so that the latter may be absarbed into the canstant of proportionality. Finally

pX' 1Y, X, Y) e p(Y', Y | X', X) p(X).

(This is essentially Thearem 2.) With the usual judgement of exchangeability (and a thought ahout its
applicability in the practical problem) the first probability on the right-hand side is

! L
l_[l p(Yi[8,X) _[—[l p{¥Y;19, X ) pl6) 46.
i= i=
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A typical term in the products may be factored into

p(yl [ela X)p(}'2|611}’[,x)--‘P(J’ﬂﬂqa}’uu-aJ’r lix)

with ¥ = (v, ..., y,} and the analysis is a series of univariate regressions which I find easier to understand.
In a similar view, is it necessary to consider {2 17 If | = 2, the second calibration proceeds, conditional on
X', so that n is effectively increased by one.

[ am sorry to see the author pursue incoherent ideas; though it was pleasant to see them do badly. In
particular the claims for S-ancillarity are unfounded. Suppose X and ¥ have the same, unknown
variance: then S-ancillarity does not obtain. If they have distinet variances, it does. But suppose the
variances are known to be about equal: of what use is S-ancillarity then? Ancillarity is a will-o'-the-wisp
chased by those who forgo logic in their inference.

Is it necessary to consider distinct models (Section 3.1)? Savage advocated madels “as big as an
elephant”. Aside from technical complexity and additional computing time, they cause no logical
problems. Again, ill-specified problems cause no real difficulties within the Bayesian framework and can
often prove useful: see, for example, problems in econometrics.

Dr R. SunpperG (Royal Institute of Technology, Stockholm): I want to thank the authar for his
stimulating paper on statistical methods in multivariate calibration. There is no agreement among
statisticians about the univariate methodology, and the author offers still more suggestions from which to
choose in the multivariate case. My attention was caught by the estimation method (L), “one x-variable
at a time”, used in the two examples. [t first appeared paradoxical to me that (L) worked about as well as
(L), since (L'} seemed te neglect influential variables. I will discuss (L) and (L) as defined by (2. [6), which
may be a reasonable estimator although the statements made about (2,16} are not quite correct when
q > p (apparently the author has neglected in (2.8) the dependence on & thraugh a*(E)).

A closer laok at (L") reveals that the choice of § as the estimator of T in the mutilated model is crucial.
If we used the unbiased estimator I of the full madel we would get a very much worse estimator, to be
called X. Now, £ actually is a weighted average of the full model estimator X© and X. There is less
randomness in X&' than in XV, but in general a systematic error from ¥ In the wheat quality data, the
weight of X in X is only about | per cent, hence the observed equality of (L) and (L) with respect to
unexplained variation in Table 3. In the paint finish data, the weights are about 3: 1, so there (L) and (L")
yield really different estimators, That Table 5 favours (L) might be a coincidence, because no linear
model fits these data, so neither (L} nor (L") nor any other of the author's models works satisfactorily.
How much unexplained variation should be talerated in this example is indicated by using an additive
quadratic model, which fits data well. Calculations gave a result of 4 per cent for P and 6 per cent for I,
compare Table 5.

[ suspect the paint finish data also illustrate the common (but often overlooked) type of situation
where the T of the calibration experiment and that of the subsequent application of the instruments are
not the same. The response variables used, ¥, and Y., are seen to be substantially correlated within
expetimental points. A plausible reason for this may be a lack of precision in adjusting one {or both) of
the x-variables to the pre-specified values. This source of randomness will influence the response
variables only during the calibration. In univariate calibration we need only consider a praportionality
factor, here we get two different covariance structures.

Finally, a few words about the random case, which I find somewhat loosely treated in the paper. A
crucial assumption must be that X’ derives from the same population as X. It is satisied in both of the
author’s data examples, by his construction, so it is not surprising that the (LB) method turns out at least
as well as (L). But how often can we trust it? In the apple-sorting example cited by the author [ would not
trust it unless the calibration was made on the lot ta be sorted, since lot = population. In most practical
regression situations, [ guess, each X' to be estimated is a unique individual in some sense or another. To
consider the case when a substantial difference between methods might appear, let us say that a particular
¥’ falls in the tail of the calibration distribution of ¥, thus indicating that its X' might not derive from the
calibration distribution of X. Should the author then use regression of X en Y, of Y on X, or something
else?

Professor A. ZELLNER {Alexander Research Foundation, University of Chicago): This very interesting
paper prevides additional support for the conclusion of Hoadley (1970, p. 369) that “. . . the main point in
the paper is that the Bayesian approach has led to valuahle insight and understanding”. Brown has
ingeniously extended Hoadley's analysis to the multivariate calibration problem.
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On the sampling theory approach to the normal univariate calibration problem, a solution given in
Section 1.21s: ¥ — % = (Y — w/f, where f§ = S,,/S.. For given ¥*, X’ — £ is the ratio of two independent
normal random variables and hence can have a markedly bimodal distribution. Also its moments will not
in general exist and thus, as Brown notes, the MSE of X' —x is infinite. If, however, the distribution of
X' —x is considered conditional upon the outcame of a t-test that rejects the hypothesis f§ = @, that is
Iﬁ[,r’sﬂr>c>0, where ¢ is a critical value for the t-test, then the moments of X' — x exist and MSE is finite.
However, this fact does not provide very strong support for general use of such an estimator. The flexible
Bayesian results provided by Hoadley and Brown seem to me to be much more elegant and useful.

In Brown’s analysis of the multivariate calibration problem, I would like to see some more analysis
directed at characterizing the properties of the likelihood function in (3.6) as Hoadley (1970, p. 364)did in
the univariate case where he found that his likelihood function can frequently possess two local maxima,
Understanding the conditions giving rise to bimodal likelihood functions seems important. Brown’s
likelihood function (3.6),

(A+ 1/n+EF GEPPL+ R+ (& —E) H(g —)je+an

where £ = X and £ = X, apparently can be bimodal as well. Further, the fact that use of a special
multivariate Student-¢ prior for € (or X') in Theorem 3 results in a unimodal posterior p.d.f. for € {or X9
means that use of this prior probably has a substantial impact on the shape of the likelihood function. I
believe that it would be useful to investigate the sensitivity of the form of Brown’s posterior distribution
to changes in the form of his prior distribution.

Owerall, I congratulate Brown for his significant contribution to the analysis of the multivariate
calibration problem.

The AUTHOR replied later, in writing, as follows.

I am grateful for the detailed and thoughtful contributions of the discussants. It is illuminating to
watch the different methods others use to grapple with commaon problems.

Since I have been chastised by Professor Lindley for not being Bayesian enough I will first take issue
with Mr Aitchison and Professor Barnard in their concern for error rates. Both the Scheffé method of
assigning two probabilities and the approach of Lieberman et al. to multiple simultaneous confidence
intervals emphasize the great divide between those who think statistical inference is a matter of errar
rates as against those who opt for notions of “support” given the actual observed data. In answer to Mr
Aitchison, I take the Bayesian strategy for the multiple use of the calibration curve to be initially as in
Section 3. A credibility interval for an unknown X' from observed Y’ should not depend on other as yet
unknown and unobserved (X', ¥'). However as soon as at least two Y' are observed, corresponding to
different but unknown X', there is available information which is slightly different from that considered in
Section 3 and further updating by Bayes’ theorem is possible. A set of observed Y at different unknown
X’ provide information on the distribution of future X' albeit entangled with the calibration model. With
assumed and tested parametric assumptions one can extend the interesting mean prediction formulae
given by Professor Copas to give the full posterior predictive distribution and credibility intervals.
Whether one continucusly updates as Y' are observed whilst at the same time checking for abnormal Y,
or whether this updating is done in stages, will perhaps depend on the practical inconvenience of
continuous updating.

Many discussants refer to the distribution of future X'. Professor Copas is right to emphasize the
importance of this. I would argue that the degree of validity of approaches which eschew consideration of
this depends on the validity of the implicit assumption of m(X'), as judged by the =(X‘) which would
provide a mimicking Bayes procedure, together with the proximity to unity of the canonical correlations.
I have iried to stress the importance of m{X') in controlled calibration and further, [ should like to dispel
the dangerous notion that it be chosen for mathematical convenience.

I see the Krutchkoff solution as only valid with { = [ and when the designed X and the future X’ are
exchangeable. By the same token [ see the classical solution as really only valid if the distribution of X' is
thought to bhe rather flat and wider than the designed distribution of X. They are at two extremes. The
methods of Section 3 allow one to wark in the middle ground between these extremes. Here I agree with
Professor Bernardo. Only if forced to choose between the two extremes alone would [ generally envisage
that exchangeability with X rather than a very flat X distribution most accords with the truth. Dr Fearn’s
interesting design canstruction bears this out, as do some of Professor Cox’s remarks. If I really thought
the X' distribution to be so flat relative to the designed X [ would want more calibrating data as the
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calibration curve would be rather suspect at the fringes of the X-range. Indeed, in reply to Dr Sundberg, if
a particular Y’ fell well in the tail of the calibration distribution of Y and I had assumed X and X’
exchangeable, then after proper examination of the pedigree of the observatian, I would probably still go
ahead as if nothing were amiss, but I would note possible extra uncertainty due to both the weakness of
the calibration curve and the questionable X’ distribution. It would be desirable to obtain both further
designed calibratory data and further values of Y'.

Just as the Krutchkoff solution for | = [ corresponds to a Bayes procedure with a particular prior, so
the Hunter and Lamboy prior mimics the classical solution. They recommend a particular priar, in the
simple linear regression case, which is vague and flat with respect to the X' distribution. They are
essentially just working with the integrated likelihood {(but see Hill's discussion of that paper for the exact
special case of Hoadley's work which is being adopted). One undesirable feature of their prior on E(Y"} is
that it does not naturally generalize to several future ¥* at different unknown X*.

Whatever (X'} is assumed, [ would re-emphasize, followed Remark 3 of Thearem 3, that the prior X'
should not depend on . I agree with Mr Aitchison that dependence on 1 is unreasonable and here, as Dr
Dunsmore notes, mathematical convenience is a very bad guide. Indeed, [ am surprised that Dr
Dunsmore should have engineered such an obvious pitfall. The exchangeahility assumptions of X and X’
may be questioned but not by mathematical convenience. In this context of {>1 [ cannot understand
Professor Lindley’s remark concerning the equivalence to n+ 1. From his earlier formula [ assume he has
misundersiood the model: the ! observed values of Y, i=1I,....f all have the same true X"
Exchangeability of all # 4+ X-values breaks down. We are not envisaging the situation of multiple future
use, mentioned earlier.

Dir Sundberg is right in pointing out that the exchangeability assumption, that X' derives from the
same distribution of X, is satisfied in both data examples, by the construction so disliked by Professor
Ehrenberg. This is indeed more favourable to (LB) than to {(L). However, to suggest that two random
samples from the same population are identical, as does Professor Ehrenberg, is absurd. By this token
one could predict perfectly irrespective of the method. T go along with Dr Sundberg that the model
assumptions of the calibrating experiment may need modifying in the prediction experiment in some
applications. If this just manifests itself in a different T then /> 1 ¥* values at a single X will provide direct
infarmation on this. [n the same vein, if a calibration curve estimated in one location is to be used in other
locations, then calibratory data will be needed to check the validity of the relationship in each Jocation
and the model extended if such uniformity is not present. Changes in calibrating relationship over time
will also require regular checking. In response to Professor Cox, I would imagine that the frequency of
such recalibrations would depend on the speed of such changes. If time correlated errors feature from
observation to observation then one might apply the designs of Daniel {1975) to estimate the parameters
that effect such time changes.

Dr Fearn reveals a sensible design in which for estimation purposes the more extreme X values are
proportionately over sampled. Of course this does not effect the validity of our split-sample analysis of
the wheat data. In application, however, one would incline to use of a #{X'} which is equal to the p(X}
given by Dr Fearn and not the marginal distribution of X in the calibration experiment. If one knows that
a future specimen is the ith variety then one would use p(X), the X-distribution for that variety. However
in this exarmple, because of the accuracy of the calibration curve, such niceties may not offer much
improvement.

Would Professor Lindley kindly provide Dr Dunsmore, worried as he is by the amount of modelling
assumptjons and fearing that he is stranded on a mountain overhang, with some breathing apparatus to
enable him to compete with his goat-like climbing agility. For my part I am happy with further madel
claboration along some of the lines already indicated but I find the exhortation to build “as big as an
elephant” unrealistic. Such elephants are easy to mistake for kangaroos.

Concerning such elaboration, I had hoped to find a formal solution to Section 3.1 in the paper to
which Prafessor DeGroot refers. Unfortunately this does not seem to be the case. [ addressed (a) nested
models in X, with some retained dependence on X, and (b) models where if we partition Y into (Y, Y.)
then the conditional distribution of Y, given ¥, does not depend on X. It was heartening, however, to
see corroboration of some of our Bayesian results in this same paper with Davis.

I agree with Professor Zellner that more work needs to be done to uncover the shape of the integrated
likelihood {3.6) and the nature of its influence on (X"

I was fascinated to read the opposite opinions expressed by Dr Sundberg and Professor Bernardo on
the issue of marginal calibration. I stick by my original assessment but that assessment looks increasingly
superficial to me and more work needs to be done. [t is an important issue. The main idea was as follows.
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Suppose in the wheat example we are interested in predicting protein X, from the four infrared
measurements ¥, ..., ¥,. We can observe jointly the values of ¥, ..., ¥;, X, in the calibration experiment.
In future we will only have ¥ ... ¥,. Can it ever be useful to bring an irrelevant variable X, into
consideration given that we will not know X'\ ? T suspect not and Professor Bernardo agrees with me as do
the practical results of Sections 4 and 3.

Dr Wynn’s suggested preference for a design which chooses to observe a mixture of Y given X
addresses a slightly different but related problem. The question which arises in my mind on reading his
paper is under what circumstances observing Y alone would have been better than this mixture.

Roth Dr Dunsmore and Professor Bernardo suggest in the paint example the use of discrimination,
ignoring the scales of both pigmentation. and viscosity. If we accept the knowledge that the true X" are
alsa 0, 1, 2 as in our constructed prediction set then we can anticipate doing better than in the presented
method. Indeed with such knowledge one could use the predicted X* of Section 5 to allocate to the
nearest of the three values. This considerably reduces the unexplained variation. However such prior
knowledge could not be assumed in application of the technology.

I agree with Professor Lindley that ancillarity is too fortuitous a property to become a basis for
inference. Very useful, though, when it does hold, even to a Bayesian for whom it labels a type of
likelihood factorization.

Dr Sundberg is right that statements made concerning (2.16) are misleading when g p. In fact X' is
the minimum of the quadratic form (2.9). This applies even when a confidence region does not exist as is
sometimes the case when g p.

In the examples, Mr Scott would have liked to have seen the actual predicted values. As it happens
nothing is revealed by examining these. Looking at the individual results for predicting protein in the
wheat example, within the limitations imposed by the paucity of five predicted values, there were no
evident systematic biases and (LB) was uniformly closer than (E) and (E’) over the five predictions. [ did
not present graphs because they did not seem to indicate anything interesting. As a general point though
I agree that such exhibits are often illuminating.

Mr Scott 18 right that the estimate of the marginal distribution of X in (E} and (E') is cavalier. I doubt
though whether a smoother function would improve matters. [ still surmise that the neglect of the
uncertainty in the parameter estimates in. the conditional distribution of Y given X is the crucial element
in the bad petformance of these empirical methods.

Mr Aitchison alludes to the strange properties of the sampling theory confidence intervals when g > p
given in Section 2.2 under Theorem 1 (ii). Professor Barnard’s closing remark serves to emphasize the
questionable usefulness of same confidence statements. The deficiency here is one of reference set, well
illustrated for example by Pierce (1973). A simple example may serve to clarify the issue. Suppose all the
regression parameters are known, as follows when # — oo in Section 2. Furthermore ifg = 2and p = 1,
I' =1and

le = xi+8!la

Yi

then the predictive distribution of (¥, —x)* +(¥4 —x')?, under normal theory, is chi-squared on two
p 1 2 q

degrees of freedom. The proposed sampling theary approach gives a 93 per cent confidence interval for x*
as all x’ such that

X' +&5,

(Y, — XY +(Yy—x)*>60,

where 6 is the upper 5 per cent point of a chi-squared on two degrees of freedom. The confidence
interval is —/2<x'</2 when Y’ = (1, —1)" and vanishes to the point x' = 0 when Y’ = (\/3, —/3)".

The likelihood and Bayes approaches do not behave in this way. Even though they formally make use
of the same predictive distribution of Y' given x', they use it in 2 much different way as shown by (3.5).
They behave naturally under the assumption that the model is true. It is a separate but important issue to
check this. It is worrying that the sampling procedure behaves far less naturally. All would be well if one
conditioned above on the ancillary statistic Y} — Y4 but such ancillaries do not exist when one is dealing
with the general regression model. Dr J. Wood of CSIRO has started on a correction to this deficiency
(personal communication). I would simply recommend the use of the Bayes results of Section 3.

Finally let me once again thank the discussants for the important points they have raised.
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