INTRODUCTION

1t has been shown (Buell, 1975)

at the topography of the empirical orthogonal
ions associated with a two—dimensional
ological field is strongly dependent on
hape of the region concerned and only

y dependent on the nature of the covari-
nce function and its scale parameter. A heu-
istic treatment of the reasons for this is

rigd out. First the basic eguations are set
gether with an iterative solutien algorithm.
a simple exercise in a one dimensional
tion is carried through that illustrates
importance of the end points of the line
val over which the empirical orthogonal
tions are defined. These ildeas are then

ed to two or more dimensions.

THE EQUATIONS

1t is customary to consider the
ical orthogonal function (EOF's hereafter)
the solutions of the standard matrixz proper
/proper function problem.

Ch = o (1)

e C is a positive definite covariance matrix
gh a correlation coefficient matrix is

atimes used), ¢ is a matrix with columns the

g and A is a diagonal matrix the elements
which are the proper values. The proper func-
(EOF's) are orthonormal in that

E ey Pq ™ Spp

e § . is the Kronecker delta and the j "the
proper function ¢id' i{i=1, ——, n is asscciated
dth the {'th proper value, lj, the proper

25 being in descending order Ay > Az * ——=

>0.

When a field of property on a con-
m iz concerned (the element €44 of C
being the two-point covarlance of the property
at the point P, and at the point Ej} the formu-

lation in (1) fails to account for the nature of
the continuum concerned. & better approach is
o formulate the problem as an integral equatiom
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A 600 = fRGoy) o dy (@)
A

where the kernel function K(x,y) corresponds to
the covariance matrix € in (1). The kernel is
known only at the data point pairs so that
K(xi, xj] corresponds exactly to the covariance

matrix element cij'

the coordinates %, ¥, ¥,, etc are understood to
te be multidimensional 8s required by the con-
text.) Two important elements are made explicit
in the integral equation formulatiom (2) which
are not explicit in the matrix fermulation (1);
the role of the domain of integration (indicated
by A) and the role of the "area element" dy.

The solution process for (2} reduces to equations
similar to (1) since the kernel is known only

at the data points. Thus one has

(To reduce the notation,

A glxg) = E Rixgox) plxia, (3

where the subscript i is dropped from A and §.
1f the data points are located on an equally
spaced grid, the area elements associated with
each point hk are all the same and their common

value absorbed into the proper wvalue A. In this
case (3) and (1) are identical in form. (The
importance of the area elements ﬁkfnr non-uniform
data points is discussed in Buell, 1978.) We
will concern ourselves here with the way the
shape of the domain of Integration enters into
this restricted problem.

3. THE ALGORITHM

There are many methods of finding
the proper values and proper functions of (1).
The method of Jacobi rotations and the QR-
algorithm (and its wvariations) are efficient of
computer time, but do not give any insight into
how the shape of the domain of integration in
{(2) affects the solution (even when simplified
so that the algebra of (1) may be used). An old
iterative technique that was used before high-
speed computers {and is still of some utilicy)
can provide an answer (Andersom, 1958)}. Let C
be the covariance matrix, A; the largest proper
value, and §; the corresponding proper function
(a cglumm vector over the data points, §; = col
(f117 d21y ===, ¢n]}}. Now let % gy be an



inirial column vector (an estimate of ¢;, it must
not be orthogonal to f;) and let x(ij represent

the i'th iteration of this vector starting with

H{0}+
Step 1. HNormalilze
Yy " X" w e *)
where “I{i} is the transpose of x{i}+
Step 2. Iterate.
and then go to step l.
The result of this algorithm is that
lim ¥ =+ ¢ (6)
PV €
lim _
g’ & I{i}x(i} A1 (7

To cbtain the second proper value/
function the first proper valueffunction must be

"removed" from C. Construct Cm) using

C(EJ = C = liﬁtﬁ;é (8)
or
c.fj] T fag T h¢11¢11 2

The process above is then repeated to get Az ¢z.
For the third proper wvalue/function, Az, ¢$: are

"removed" from Eu} to obtain Cu'). ete..
Further, this technique is applicable to the
integral equation (2) directly. Consequently,
though we confine ourselves to a particular case
of (2) (all "area elements" A.k equal) the process
being used is quite general.

4. A ONE DIMENSION EXAMPLE

To 1llustrate the strong influence
of the end points for a one dimensional demain
of integration consider the covariance function

cgy = exp [-(i~-9)2/21%], 1,1 = 1, =——, B, L=z,

The elements of the first and fifth rows are
shown in the upper part of Fig. 1. To obtain
the first proper value/function one may choose
x = col (1, 1, 1, 1, 1, 1, 1, 1). The
mstl"&alized i is shown as the line of %'s in the

lower part of Fig. 1. The construction of

x£i+1} from Y1) in Step 2 may be written in full
a
1+
*; " " B 1=1, o= 8 (0

where the iteration count is the superscript and
the vector component index is the subscript. The
j'"th component of x 14 is then the sum of pro-
ducts of the j'th rSw %E C with the components
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Fig. 1. Upper: The covariance functions
and row 5 as a function of the column index. J«
Lower: The normalized initial estimate X i

line) and the final proper function ¢1.|’xjj.
Yegy- It is also the
integral with Fixed index § over the interval
concerned multiplied by a weight function y nL

of the normalized wvector

Starting with a uniform weight Function ‘{u}'

values of x 4y are the areas under the covar
function fob tixed row index. It is easily gee
from the upper part of Fig. 1. that for rows
1 and 8 only "half" of the covariance function
1lies in the interval while for rows 4 and 5 thi
covariance function is nearly centered at
middle of the interwval. The area computed
then smallest for rows at the end of the inte
val and largest in the middle. On the next st
of the iteration the weight function is no
longer uniform and its low values at the end-
points (high walues at the mid-points) serves
to reinforce this tendency on successive
iterations. The final value of the vector §;
and the corresponding proper value L; are .-:_j
in the lower part of Fig. 1.

The elements of the first four ro

of the modified E{E} are shown in the top of
Fig. 2. The elements of the last four rows am
obtained from symmetry about the mid-point o
the interval. These are cbtained by subtract
from each row of C, tep of Fig. 1., a curve ¢
the same "shape" as that of $1, bottom of
1, multiplied by the factor Ai¢;, which chan
for each row. Since 4'&11 is smallest for 1 =

the least is removed while ¢11 iz largest

i=4, 5 and the most removed. This is an &
point effect and virtwally independent of
detalls of the shape of the initial covarilance
function. To find the second proper value/
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#ig. 2. Upper: The elements of the modified

;, rows 1,2,3,4, as a function of
index, j. GLower: fThe normalized initial

te me {step function) and the final

per function ¢s rij .

fmction, an old rule of thumb is to make the
pitial guess look something like a typical row

§f the reduced matrix (C‘%’here). Taking into
pcount the signs only, a reasonable guess is
fp oy ® (1,1,1,1,-1,-1,-1,-1) shown normalized
lower part of Fig. 2. Carrying out the
terations, the Einal result for ¢: and the
grresponding A; are shown in the bottom of

Hy. 2.

Figa. 3 and 4 continue the process
™ more steps to Az, $3 and Ay, du.

&l Remarks

The covariances c in this example

i}
are a1l positive. When this is not the case, the
pative values are usually for a large difference

§| (er |:|:i - :jl:n The end effect is to make

even more humped in the middle and may even
uce negative values of ¢, (J:i}l at the end

the interval.
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Fig. 3. Upper: The elements of the modified

matrix c’”‘j, rows 1,2,3,4, as a function of the

column index, j. Lower: The normalized initial

estimate me {step function) and the final proper

function iy {ij‘ '

The shape of the proper functions is
to a large extent, but not completely, independent
of the detalls of the covarlance fumection. For
example, the covariance function c =] = |i-ji

i)
/h, |1-j|{h, L4y = 0, |i-ji_3_“ h, (h = 5) was used
with the resulé‘ that the first two proper func-
tions agreed with those obtained above to two
significant figures while the third checked to one

significant figure.

The example is strictly symmetric
about the center of the interval. This need not
be the case. For asymmetric covariance functions,
the resulting proper functions would also be
asymmetric.

The above argument is strietly
heuristic and applies only for sufficiently well
behaved covariance functions (as are encountered
in the atmosphere).
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The elements of the modified

matriy CM‘}. rows 1,2.3,4, as a function of the
column index j. Lower: The initial estimate
x(ﬂ? {the step function) ad the final proper

~45

Fig. 4. Upper:

function ¢urxjj'-

Bis TWO OR MORE DIMENSIONS

In a one dimensional continuum it
is convenient to order the rows/columns of C in
the order of the data points of the interval
concerned. This is no longer possible in two
or more dimensions. The elements of C are two-
point functions of the data cij = c{xi, xjj

where X, represents the coordinates of Pi' say
({i, I‘11} in two dimensfons. For fixed row index

i, the elements of the columns | range over the
poincs of the data network that "eover" the
domain A.

The first step of the iteration
process remaing much the same as in one dimension
but requires a two dimensicnal representation of

115

the resules. A reasonable estimate for the
initial wvector X(0) is col (1, ==, 1) while th

first proper functlon Prlx) = diCram), 1 =1,

===, n will be represented by a dome-shaped sur-
face over the domain A. MNote that when the row
index corresponds Co a point P{ that lies near

the edge of A about half of the large positive
part of the covariance function 1:_” B c(xi.yj}l o

a funccion of Fj (Pi fixed) is oucside A and so

is not involved (as at an end point of a one
dimensional interval). If the domain A has
corner points even more of the large positive
part is outside A so that the values for ¢:{x£;

will be still smaller. An additicnal effect in
two dimensions is that the summation (integratios
in the continuum case) is over a two dimensional
reglon so that the number of terms for which 1?]

is widely separated from P,(fixed) is much larger
than one dimension. Thus, negative values of
¢1(xi} are more eagily introduced for P, near

the border when c” is negative and Pi' I’1 widely

separated. The situvation is illustrated sche-
mmatically in Fig. 5.
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Fig. 5. Schematic representation of the Ffirst :
proper 'ﬁlijl for the rectangular region shown

the plane.

The algorithm next :eq-ﬁfes that
Ais#1 be "removed" from C to form C as in (8
or (9) resulting in the two dimensional analog
of the upper part of Fig. 2. This is much more
difficult te represent graphically. Several
cases are shown schematically in Fig. 6. It ia
obvious that a good initrial choice for x com-
sists of 1's at the points of half the ates and
-1's at the points of the other half. Whether
the -1's 14e in the lower or right hand half
would depend on a good guess as to the pre=
dominant contour pattern. If patterns like Fig
6a predominate then the right/left halves may be
chosen; if like Fig. 6b, then the ctop/bottom
halves. 1In either case, the resulting second
proper function will be zero near the middle of
the region with a positive hill in one half and
a negative "hill" in the other half. (For a
square reglon it is quite possible thar the pat-
tern similar to Fig. 6c would predominate so that
the division would be for WW/SE halves or NE/SW
halwes.)
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Fig. 6. Schematic representation of the elements

of the modified matrix CEZJ as a function of
location xj corresponding to column j for rows

in which (a) Xy is near the left side, (b} xy
is near the top side, and (c) x; is near the
lower right corner.

The removal of Az, ¢» from ch} has
no analog in one dimension. Assume that the
proper function ¢z(uij iz positive in the left
half of A, negative in the right half, and the

curve sz{xij = [ lies near the middle. Then for
rows of c{ ) for which Pi lies in the left and
right quarters of A are expected to have small

elements. On the other hand the rows correspond-
ing to Pi lying centrally in the top and bottom

quarters of A will be nearly the same as they
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wera in CKE} since ¢2{xi} is small. For a

reasonably symmetric covariance function, one
would then be lead to expect that a reasonable
choice of Xio) 0 obtain A3, $3(x;)} would be the

one passed over in obtalning Az, ¢g{xi]. Assum—
ing this to be the case, then ¢;(xij would
resemble ¢g{xi} rotated through 90°.

Beyond this point, the complexities
of the two (or more) dimensional case becomes too
complex to describe simply. It is easily recog-
nized that the same influences that were seen in
the one-dimensicnal case are playing an even more
impertant role; namely that for the rows of C
corresponding to points near the boundary of the
domain considered nearly half of the "global"
covariance function lies outside the domain and
is consequently ignored. This strongly influences
the shape of the first proper function, 41(x,;),

and thence strongly influences the next step,

()

The effect is passed

on step by step until the terms of E{k} are

dominated either by rounding in the computer or
the irregularities of sampling.

the construction of C

In two dimensional regions that have
rotational symmetry one encounters pairs of
identical proper values. In such cases, the
proper functions are related to each other by the
game rotation. Further, which proper function
comes first seems to be due to rounding. Even
the topography of the function selected is not
well determined. For example, 1if Ay = A3 and
¢2I:x_l]l. ¢;fxi:l are the corresponding proper

functions, then [a ¢1{xii + b¢1(xi)] and [h¢1(x£)

- aﬁ,(xi)] are also proper functions corres=-

ponding te the proper value provided 32 + 1:r2 = 1.

Though multiple proper values rarely occur except
in mathematical exercises, pairs of proper values
that are relatively close together are not uncom—
mon and are associated with a certain amount of
ambiguity as to which proper function is asso-
ciated with which proper value (Buell, 1979).
They also occur in connection with domains that
are rotationally symmetric (See TOrnevik, 1977
where Ay = 38.2, Az = 33.2 while ¢,{ﬂi} and

¢:{xi} are nearly the same if one is rotated 90°

and Ag = 1.6, A7 = 1.4 and the same is true for
¢;{xi} and ¢1(xi}; the domain a 7 x 7 square;

the property concerned is sea level pressure.)



f. CONCLUSLONS

The twe-peint covariance functions
of atmospheric properties such as geopotential,
temperature, wind components, ete., show a strong
tendency to be very similar from place to place
{(with the possible exception of the tropics).
When a region with well defined boundaries is
concerned, the EOF's computed over this regien
are expected to be very strongly influenced by
the geometrical shape of the reglon and to a
large extent independent of where the region is
located. As a consequence, the incerpretation
of the topography of the EOF's in terms of geo-
graphical area and associated meteorological
phenomena should be looked on with suspicion
unless the influence of the effect of the shape
of the region has been completely accounted for.
Otherwise, such interprecations may well be on a
scientific level with the observations of
children who see castles in the clouds.
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