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ABSTRACT

The technique of “inflating” in downscaling, which makes the downscaled climate variable have the right
variance, is based on the assumption that all local variability can be traced back to large-scale variability. For
practical situations this assumption is not valid, and inflation is an inappropriate technique. Instead, additive,

randomized approaches should be adopted.

1. Statistical downscaling

The basic idea of statistical downscaling is to build
an empirical model,

y = F(x), (D

for a small-scale feature y, not adequately described in
GCMs, and large-scale features x, well resolved (e.g.,
von Storch 1995). The technique has become popular
in the past years. As predictands, y has been used as
weather variables, such as daily temperatures, and cli-
matic statistics such as intramonthly 95th percentiles of
significant wave height (WASA Group 1998) or as
monthly precipitation amounts. The predictor x has of-
ten been chosen as characteristics of the circulation,
such as indices or principal components of air pressure
fields, or of temperature, or combinations of both (Gyal-
istras et al. 1994).

The approach behind (1) is closely related to synoptic
climatology, relating synoptic situationsto local weather
(Klein and Glahn 1974). Indeed, statistical downscaling
isformally identical to *‘perfect prog” in weather fore-
casting. An important difference is that in downscaling
the “predictor’” is requested to be well simulated by
climate models. From synoptic experience, it is well
known (Starr 1942) that different y's are consistent with
the same x. That is, Eq. (1) must be understood as a
stochastic equation. Feature y is a random vector, and
¥ is a random function, conditioned by the realization
X (von Storch 1999). The predictor x is also variable.

In many applications, the function #is simply linear.
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A prototype is linear regression. For the sake of sim-
plicity we assume

F(X) = ax + ¢, 2

with e drawn from anormal distribution with zero mean
and standard deviation o, and 0 < « < 1. Thevariations
in € are assumed to be independent from x. In this set-
ting, the randomness in y stems from the randomness
in e. In almost all applications, it is not the stochastic
formulation (2) that is used but the deterministic version

¥y = ax. 3

Then, ¥ is an unbiased estimator of the conditional ex-
pectation of y given x. In terms of the mean square
error, it is an optimal estimator. Any specification dif-
ferent from (3) returns larger mean square errors.

However, the downscaled values § have smaller var-
iance than the local valuesy. From var(y) = «? var(x)
and var(y) = a? var(x) + o2 follows var(y) < var(y).
That is meaningful, as the predictor x does not com-
pletely specify y. For instance, as demonstrated by
Roebber and Bosart (1998), two very similar synoptic
situation produced markedly different precipitation dis-
tributions. Also, when a regional climate model is run
with identical large-scale forcing but slightly different
initial conditions, both runs deviate from each other for
infinite times, even though the synoptic situations are
very similar (e.g., J and Vernekar 1997; Rinke and
Dethloff 1999).

2. Inflation and randomization

In many climate compact studies, time series § are
needed with var(y) = var(y). To meet this requirement,
it has been proposed to inflate § by setting (Karl et al.
1990)
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This technique has been used in the downscaling lit-
erature to some extent (e.g., Huth 1999). A technically
more sophisticated abeit conceptually closely related
canonical correspondence analysis (CCA)—based tech-
nique named ‘‘expanded downscaling”’ has been pro-
posed (Birger 1996) and tested (Dehn et al. 1999).

We claim that this approach is not meaningful. First,
it makes the implicit assumption that all variability in
y would be related to variability in x, which is certainly
not the case as outlined above.

Second, the mean square error of the inflated esti-
mator is larger than that of the original estimator. To
show this claim, we assume for the sake of simplicity
that var(x) = var(y) = 1. Then var(§) = a2 and B =
la. For the mean square error we find var(y — y) =
o?and

var(y —y) = var[(1 — a)x + ¢
=1 - a)?+ 02> o2 (5)

The smaller «, the larger 8 and the larger the increase
of the error, as is intuitively to be expected.

An alternative to the inflation technique is to treat the
“unexplained” part as ‘‘existent, irregular, and unex-
plained”’—namely, by adding noise. Thus, it is rec-
ommended to use a randomized downscaling specifi-
cation,

y* =¥ + noise, (6)

thus satisfying the initial assumption of Eqg. (1). There
is no need for the noise to be white in time or space;
more sophisticated formulations will in many practical
situations be required. For instance, the variance and
the auto correlation of the noise could depend on x.

In important difference between “‘inflation” and
““randomization” is that the space-time statistics of ¥
are entirely controlled by the variations of x, whereas
the randomized y* exhibits spatial and temporal vari-
ability only partially controlled by the large-scale state
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X. Because of thisfeature, externally introduced signals,
represented by X, are overspecified by inflation.

The approach (6) has successfully been implemented
in a study on landslides (Buma and Dehn 1999; Dehn
and Buma 1999). However, a direct comparison of the
two approaches has not yet been conducted.
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