
Journal of Econometrics 2 (1974) 111-120. (6 North-Holland Publishing Company 

SPURIOUS REGRESSIONS IN ECONOMETRICS 

C.W.J. GRANGER and P. NEWBOLD 

University of Nottingham, Nottingham NG7 ZRD, England 

Received May 1973, revised version received December 1973 

1. Introduction 

It is very common to see reported in applied econometric literature time series 
regression equations with an apparently high degree of fit, as measured by the 
coefficient of multiple correlation R2 or the corrected coefficient R2, but with 
an extremely low value for the Durbin-Watson statistic. We find it very curious 
that whereas virtually every textbook on econometric methodology contains 
explicit warnings of the dangers of autocorrelated errors, this phenomenon crops 
up so frequently in well-respected applied work. Numerous examples could be 
cited, but doubtless the reader has met sufficient cases to accept our point. It 
would, for example, be easy to quote published equations for which R2 = 0.997 
and the Durbin-Watson statistic (d) is 0.53. The most extreme example we have 
met is an equation for which R2 = 0.99 and d = 0.093. I-Iowever, we shall 
suggest that cases with much less extreme values may well be entirely spurious. 
The recent experience of one of us [see Box and Newbold (1971)] has indicated 
just how easily one can be led to produce a spurious model if sufficient care is 
not taken over an appropriate formulation for the autocorrelation structure of 
the errors from the regression equation. We felt, then, that we should undertake 
a more detailed enquiry seeking to determine what, if anything, could be inferred 
from those regression equations having the properties just described. 

There are, in fact, as is well-known, three major consequences of auto- 
correlated errors in regression analysis : 

(i) Estimates of the regression coefficients are inefficient. 
(ii) Forecasts based on the regression equations are sub-optimal. 

(iii) The usual significance tests on the coefficients are invalid. 

The first two points are well documented. For the remainder of this paper, we 
shall concentrate on the third point, and, in particular, examine the potent& 
alities for ‘discovering’ spurious relationships which appear to us to be inherent 
in a good deal of current econometric methodology. The point of view we intend 
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to take is that of the statistical time series analyst, rather than the more classic 
econometric approach. In this way it is hoped that we might be able to illuminate 
the problem from a new angle, and hence perhaps present new insights. 
Accordingly, in the following section we summarize some relevant results in 
time series analysis. In sect. 3 we indicate how nonsense regressions relating 
economic time series can arise, and illustrate these points in sect. 4 with the 
results of a simulation study. Finally, in sect. 5, we re-emphasize the importance 
of error specification and draw a distinction between the philosophy of time 
series analysis and econometric methodology, which we feel to be of great 
importance to practitioners of the latter. 

2. Some results in time series analysis 

Let W, denote a time series which is stationary (it could represent deviation 
from some deterministic trend). Then, the so-called mixed autoregressive moving 
average process, 

w,--+,w,_,--. . .-c#Jpw,_, = a,-8~a,_~--. . . -scar-,, (1) 

where a, represents a sequence of uncorrelated deviates, each with the same 
variance, is commonly employed to model such series. The sequence ut is 
referred to as ‘white noise’. For brevity, eq. (1) can be written as 

W)K = WW,, (2) 

where 4(B) and 8(B) are polynomial lag operators with appropriate roots to 
ensure stationarity of W, and uniqueness of representation. 

Suppose, now, that one has a given time series X,. Box and Jenkins (1970) 
urge that, while this series itself may not be stationary, it can often be reduced to 
stationarity by differencing a sufficient number of times; that is, there exists an 
integer d such that 

vdx, = w, (3) 

is a stationary time series. Combining eqs. (2) and (3), the series X, can be 
represented by the model, 

&B)VdX, = &@a,. (4) 

Eq. (4) is said to represent an autoregressive integrated moving average process 
of order (p, d, q), denoted as A.R.I.M.A. (p, d, q). 

As regards economic time series, one typically finds a very high serial correla- 
tion between adjacent values, particularly if the sampling interval is small, such 
as a week or a month. This is because many economic series are rather ‘smooth’, 
with changes being small in magnitude compared to the current level. There is 
thus a good deal of evidence to suggest that the appropriate value for d in 
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eq. (4) is very often one. [See, for example, Granger (1966), Reid (1969) and 
Newbold and Granger (1974).] Alternatively, if d = 0 in eq. (4) we would 
expect 4(B) to have a root (1 - ~/JB) with 4 very close to unity. The implications 
of this statement are extremely important, as will be seen in the following 
section. 

The simplest example of the kind of series we have in mind is the random walk, 

VX, = a,. 

This model has been found to represent well certain price series, particularly 
in speculative markets. For many other series, the integrated moving average 
process, 

VX, = a,-8a,_l, 

has been found to provide good representation. 
A consequence of this behaviour of economic time series is that a naive 

‘no change’ model will often provide adequate, though by no means optimal, 
forecasts. Such models are often employed as bench-marks against which the 
forecast performance of econometric models can be judged. [For a criticism of 
this approach to evaluation, see Granger and Newbold (1973).] 

3. How nonsense regressions can arise 

Let us consider the usual linear regression model with stochastic regressors : 

Y = x/3+8, (5) 

where Y is a T x 1 vector of observations on a ‘dependent’ variable, /I is a 
Kx 1 vector of coefficients whose first member &, represents a constant term 
and X is a T x K matrix containing a column of ones and T observations on each 
of (K- 1) ‘independent’ variables which are stochastic, but distributed indepen- 
dently of the T x 1 vector of errors a. It is generally assumed that 

E(8) = 0, (6) 
and 

E(se’) = a21. (7) 

A test of the null hypothesis that the ‘independent’ variables contribute 
nothing towards explaining variation in the dependent variable can be framed 
in terms of the coefficient of multiple correlation R2. The null hypothesis is 

HI): j?i = p2 = * . . = &-I = 0, (8) 

and the test statistic 

F T-K R2 

=K_11- (9) 
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is compared with tabulated values of Fisher’s F distribution with (K- 1) and 
(T-K) degrees of freedom, normality being assumed. 

Of course, it is entirely possible that, whatever the properties of the individual 
time series, there does exist some /I so that 

e = Y-xp 

satisfies the conditions (6) and (7). However, to the extent that the Y,‘s do not 
constitute a white noise process, the null hypothesis (8) cannot be true, and tests 
of it are inappropriate. 

Next, let us suppose that the null hypothesis is correct and one attempts to fit 
a regression of the form (5) to the leuels of economic time series. Suppose, further, 
that, as we have argued in the previous section is often the case, these series are 
non-stationary or, at best, highly autocorrelated. In such a situation the test 
procedure just described breaks down, since the quantity F in eq. (9) will not 
follow Fisher’s F distribution under the null hypothesis (8). This follows since 
under that hypothesis the residuals from eq. (5), 

s, = Y,-P,; t = 1,2, . . ., T, 

will have the same autocorrelation properties as the Y, series. 
Some idea of the distributional problems involved can be obtained from 

consideration of the case : 

where it is assumed that Y, and X, follow the independent first order auto- 
regressive processes, 

Y, = 4Y,-,+-a,, x, = 4*x,_,+cc,. (10) 

In this case, R2 is simply the square of the ordinary sample correlation between 
Y, and X, . Kendall (1954) gives : 

var (R) = T-‘(1 +~#$*)/(l - @*). 

Since R is constrained to lie in the region (- 1, l), if its variance is greater than 
$ then its distribution cannot have a single mode at zero. The necessary condition 
is 44* > (T- 3)/(T+ 3). Thus, for example, if T = 20 and $J = 4*, a distribution 
which is not unimodal at the origin will arise if C$ > 0.86, and if C$ = 0.9, 
E(R2) = 0.47. 

Thus a high value of R2 should not, on the grounds of traditional tests, be 
regarded as evidence of a significant relationship between autocorrelated series. 
Also a low value of L! strongly suggests that there does not exist a B such that E 
in eq. (5) satisfies eq. (7). Thus, the phenomenon we have described might well 
arise from an attempt to fit regression equations relating the levels of independent 
time series. TO examine this possibility, we conducted a number of simulation 
experiments which are reported in the following section. 
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4. Some simulation results 

As a preliminary, we looked at the regression 

Y, = PO+&X*9 

where Y, and X, were, in fact, generated as independent random walks each of 
length 50. Table 1 shows values of 

the customary statistic for testing the significance of fil, for 100 simulations. 

Table 1 
Regressing two independent random walks. 

s: o-1 l-2 2-3 3-4 4-5 5-6 6-7 7-8 
Frequency : 13 10 11 13 18 a 8 5 

s: 8-9 9-10 10-11 11-12 12-13 13-14 14-15 15-16 
Frequency : 3 3 1 5 0 1 0 1 

Using the traditional t test at the 5 % level, the null hypothesis of no relation- 
ship between the two series would be-rejected (wrongly) on approximately three- 
quarters of all occasions. If fll/S.E.(i$) were distributed as N(0, l), then the 
expected value of S would be 1/2/n N 0.8. In fact, the observed average value 
of S was 4.5, suggesting that the standard deviation of & is being underestimated 
by the multiple factor 5.6. Thus, instead of using a t-value of approximately 2.0, 
one should use a value of 11.2, when attributing a coefficient value to be 
‘significant’ at the 5 % level. 

To put these results in context, they may be compared with results reported 
by Malinvaud (1966). Suppose that X, follows the process (10) and the error 
series obeys the model 

Et = &-l+a,, 

so that, under the null hypothesis, Yt will also follow this process, where a, and 
~1, are independent white noise series. In the case C$ = 4* = 0.8, it is shown that 
the estimated variance of 8, should be multiplied by a factor 5.8, when the length 
of the series is T = 50. The approximations on which this result is based break 
down as both 4 and c$* tend to unity, but our simulation indicates that the 
estimated variance of fll should be multiplied by (5.6)” N 3 1.4 when T = 50 and 
random walks are involved. 

Our second simulation was more comprehensive. A series Yt was regressed 
on m independent series Xj,t; j = 1,2, . . ., m, with m taking values from one to 
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five. Each of the series involved obey the same model, the models being 

(i) random walks, 
(ii) white noises, 

(iii) A.R.I.M.A. (0, 1, I), 
(iv) changes in A.R.I.M.A. (0, 1, I), i.e., first order moving average. 

Table 2 
Regressions of a series on m independent ‘explanatory’ series. 

Series either all random walks or all A.R.I.M.A. (0, 1, 1) series, or changes in these. Y, = 100, 
Y, = Y,_l+a,, Y,’ = Y,+kb,; X,., = 100, XL,= X~.,_l+aj.~ Xj.,‘=XJ,t+kbJ,r;a,,r,a,,b,,bJ,r 
sets of independent N(0, 1) white noises. k = 0 gives random walks, k = 1 gives A.R.I.M.A. 
(0, 1, 1) series. Ho = no relationship, is true. Series length = 50, number of simulations = 100, 

R’ = corrected RZ. 

Per cent times Average Average Per cent 
Ho rejected’ Durbin-Watson d R2 Rf > 0.1 

Levels m=l 76 
m=2 78 
m=3 93 
m=4 95 
m=5 96 

Random walks 
0.32 
0.46 
0.55 
0.74 
0.88 

0.26 5 
0.34 8 
0.46 25 
0.55 34 
0.59 37 

Changes m = 1 8 2.00 0.004 
m=2 4 1.99 0.001 
m=3 2 1.91 - 0.007 
m=4 10 2.01 0.006 
m=5 6 1.99 0.012 

Levels m=l 64 
m=2 81 
m=3 82 
m=4 90 
m=5 90 

Changes m = 1 
m=2 
m=3 
m=4 
m=5 

8 
12 
7 
9 

13 

A.R.I.M.A. (0, 1, I) 
0.73 
0.96 
1.09 
1.14 
1.26 

0.20 
0.30 
0.37 
0.44 
0.45 

2.58 0.003 
2.57 0.01 
2.53 0.005 
2.53 0.025 
2.54 0.027 

3 
7 

11 
9 

19 

0 
0 
0 
0 
0 

‘Test at 5% level, using an overall test on RZ. 

All error terms were distributed as N(0, 1) and the A.R.I.M.A. (0, 1, 1) series 
was derived as the sum of a random walk and independent white noise. The 
results of the simulations, with 100 replications and series of length 50 are shown 
in table 2. 

It is seen that the probability of accepting H, , the hypothesis of no relation- 
ship, becomes very small indeed for m > 3 when regressions involve indepen- 
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dent random walks. The average R2 steadily rises with m, as does the average d, 
in this case. Similar conclusions hold for the A.R.I.M.A. (0, 1, 1) process. 
When white noise series, i.e., changes in random walks, are related, classical 
regression yields satisfactory results, since the error series will be white noise 
and least squares fully efficient. However, in the case where changes in the 
A.R.I.M.A. (0, 1, 1) series are considered-that is, first order moving average 
processes-the null hypothesis is rejected, on average twice as often as it 
should be. 

It is quite clear from these simulations that if one’s variables are random walks, 
or near random walks, and one includes in regression equations variables which 
should in fact not be included, then it will be the rule rather than the exception 
to find spurious relationships. It is also clear that a high value for R2 or R2, 
combined with a low value of d, is no indication of a true relationship. 

5. Discussion and conclusion 

It has been well known for some time now that if one performs a regression and 
finds the residual series is strongly autocorrelated, then there are serious problems 
in interpreting the coefficients of the equation. Despite this, many papers still 
appear with equations having such symptoms and these equations are presented 
as though they have some worth. It is possible that earlier warnings have been 
stated insufficiently strongly. From our own studies we would conclude that if a 
regression equation relating economic variables is found to have strongly 
autocorrelated residuals, equivalent to a low Durbin-Watson value, the onZy 
conclusion that can be reached is that the equation is mis-specified, whatever the 
value of R2 observed. 

If such a conclusion is accepted, the question then arises of what to do about 
the mis-specification. The form of the mis-specification can be considered to be 
either (i) the omission of relevant variables or (ii) the inclusion of irrelevant 
variables or (iii) autocorrelated residuals. In general, the mis-specification is best 
considered to be a combination of these possibilities. The usual recommendations 
are to either include a lagged dependent variable or take first differences of the 
variables involved in the equation or to assume a simple first-order autoregres- 
sive form for the residual of the equation. Although any of these methods will 
undoubtedly alleviate the problem in general, it is doubtful if they will completely 
remove it. 

It is not our intention in this paper to go deeply into the problem of how one 
should estimate equations in econometrics, but rather to point out the difficulties 
involved. In our opinion the econometrician can no longer ignore the time series 
properties of the variables with which he is concerned - except at his peril. The 
fact that many economic ‘levels’ are near random walks or integrated processes 
means that considerable care has to be taken in specifying one’s equations. One 



118 C. W.J. G-anger, P. Newbold, Regressions in econometrics 

method we are currently considering is to build single series models for each 
variable, using the methods of Box and Jenkins (1970) for example, and then 
searching for relationships between series by relating the residuals from these 
single models. The rationale for such an approach is as follows. In building a 
forecasting model, the time series analyst regards the series to be forecast as 
containing two components. The first is that part of the series which can be 
explained in terms of its own past behaviour and the second is the residual 
part [at in eq. (4)] which cannot. Thus, in order to explain this residual element 
one must look for other sources of information-related time series, or perhaps 
considerations of a non-quantitative nature. Hence, in building regression equa- 
tions, the quantity to be explained is variation in LI, - not variation in the 
original series. This study is, however, still in its formative stages. Until a 
really satisfactory procedure is available, we recommend taking first differences 
of all variables that appear to be highly autocorrelated. Once more, this may 
not completely remove the problem but should considerably improve the inter- 
pretability of the coefficients. 

Perhaps at this point we should make it clear that we are not advocating first 
differencing as a universal sure-fire solution to any problem encountered in applied 
econometric work. One cannot propose universal rules about how to analyse a 
group of time series as it is virtually always possible to find examples that could 
occur for which the rule would not apply. However, one can suggest a rule that 
is useful for a class of series that very frequently occur in practice. As has been 
noted, very many economic series are rather smooth, in that the first serial 
correlation coefficient is very near unity and the other low-order serial correla- 
tions are also positive and large. Thus, if one has a small sample, of say twenty 
terms, the addition of a further term adds very little to the information available, 
as this term is so highly correlated with its predecessor. It follows that the total 
information available is very limited and the estimates of parameters associated 
with this data will have high variance values. However, a simple calculation 
shows that the first differences of such a series will necessarily have serial 
correlations that are small in magnitude, so that a new term of the differenced 
series adds information that is almost uncorrelated to that already available and 
this means that estimates are more efficient. One is much less likely to be misled 
by efficient estimates. 

The suggested rule perhaps should be to build one’s models both with levels 
and also with changes, and then interpret the combined results so obtained. As an 
example (admittedly extreme) of the changes that can occur in one’s results from 
differencing, Sheppard (197 1) regressed U.K. consumption on autonomous 
expenditure and mid-year money stock, both for levels and changes for the time 
period 1947-1962. The regression on levels yielded a corrected R2 of 0.99 and 
a d of 0.59, whilst for changes these quantities were -0.03 and 2.21 respectively. 
This provides an indication of just how one can be misled by regressions 
involving levels if the message of the d statistic is unheeded. 
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It has been suggested by a referee that our results have relevance to the 
structural model - unrestricted reduced form controversy, the feeling being 
that the structural model is less vulnerable to the problems we have described 
since its equations are in the main based on well developed economic theory and 
contain relatively few variables on the right-hand side. There is some force to 
this argument, in theory at least, although we believe that in practice things are 
much less clear cut. 

When considering this problem the question immediately arises of what is 
meant by a good theory. To the time series analyst a good theory is one that 
provides a structure to a model such that the errors or residuals of the fitted 
equations are white noises that cannot be explained or forecast from other 
economic variables. On the other hand, some econometricians seem to view a 
good theory as one that appears inherently correct and thus does not need 
testing. We would suggest that in fact most economic theories are insufficient in 
these respects as even if the variables to be included in a model are well specified, 
the theory generally is imprecise about the lag structure to be used and typically 
says nothing about the time-series properties of the residuals. There are also data 
problems in that the true lags need not necessarily be integer multiples of the 
sampling interval of the available data and there will almost certainly be added 
measurement errors to the true values of the variables being considered. All of 
these considerations suggest that a simple-minded application of regression 
techniques to levels could produce unacceptable results. 

If one does obtain a very high R2 value from a fitted equation, one is forced 
to rely on the correctness of the underlying theory, as testing the significance 
of adding further variables becomes impossible. It is one of the strengths of 
using changes, or some similar transformations, that typically lower R2 values 
result and so more experimentation and testing can be contemplated. In any 
case, if a ‘good’ theory holds for levels, but is unspecific about the time-series 
properties of the residuals, then an equivalent theory holds for changes so that 
nothing is lost by model building with both levels and changes. However, much 
could be gained from this strategy as it may prevent the presentation in econo- 
metric literature of possible spurious regressions, which we feel is still prevalent 
despite the warnings given in the text books about this possibility. 
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