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Abstract

In view of the fact that classic asymptotic theory can not provide satisfactory
explanation for Ferson, Sarkissian and Simin’s (2003a, 2003b) simulation findings on
spurious regression in the context of financial economics, we develop an alternative dis-
tributional theory. Closely related is the well-known (nearly) observational equivalence
issue in unit root testing literature. This study employs Nabeya-Perron type asymp-
totics and shows their simulation results can be well predicted. We hence re-enforce
the fact that autocorrelation of dependent variable can not be used as an indication
of spurious regression bias. Further, a convergent t test based on fix-b asymptotics
following Sun (2005) is studied. Our simulation studies reveal further interesting re-
sult which explains and generalizes an illustrative simulation finding in FSS (2003a)
and shows the asymptotic distribution of the convergent t statistic can be very close to
standard normal if one chooses b properly. The interaction between spurious regression
effect and data mining is also discussed.
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1 Introduction

A recent paper by Ferson, Sarkissian and Simin (2003a)1, hereafter FSS, points out the
possibility of type II spurious predictive regression2 in financial economics. The authors
use various simulations to show that if the expected (excess) return follows a persistent
process, for which they provide some theoretical evidence and the so-called true R2, to be
defined in next section is not extremely low, then spurious regression bias will emerge so
that one spuriously rejects the hypothesis of no predictability too often. This calls some of
the predictability results in the literature into question. In a companion paper by the same
authors (Ferson, Sarkissian and Simin (2003b)), they also discuss some possible solutions to
this problem. This research has drawn the financial professionals’ attention, e.g. Torous,
Valkanov and Yan (2005), in their study of predictive regression using nearly integrated
variables, explicitly excludes the possibility of the spurious regression of FSS (2003a, b)
type; Amihud and Hurvich (2004) also explicitly make clear that their model is different and
hence immuned from the spurious regression of their type. It is also cited in recent survey
papers and empirical studies, see, for example, Rey (2004) and Wetherilt and Wells (2004).
FSS comment that their finding of spurious regression in financial economics is ”well out-

side the classic setting of Yule (1926) and Granger and Newbold (1974)”3, in part because
the dependent variable in predictive regression, i.e. the stock returns ”are much less per-
sistent than the levels of most economic time series.” They further comment ”even though
stock prices are not highly autocorrelated,..., thus one may think that spurious regression
problems are unlikely. However, ..., there is a spurious regression bias...”
The first part of this paper shows that their spurious regression has close relation with

classic spurious regression in an analytical manner and more importantly, how alternative
asymptotic theory is needed to provide more insights into the problem at hand. The argu-
ments are closely related to the well-known observational equivalence issue in econometrics,
in particular, from the unit root literature. In doing so, we will first point out the difficulties
of Phillips’ (1986, 1988) results in explaining their simulations. Then, we propose to use
Nabeya-Perron’s (1994) asymptotic framework. It turns out the asymptotic theory explains
all the simulation results reported in FSS (2003a, 2003b). Our results re-enforce their point,
i.e. autocorrelation in dependent variable in a regression can not be used as an indication
of the danger of spurious result. We also studied a convergent t test following Sun (2005).
Interestingly, our Monte Carlo reveals explanation for one interesting simulation result re-
ported in FSS (2003a). Specifically, FSS (2003a) shows that with other parameters, when
sample size T = 5000, their choice of truncation lag M = 240 in the construction of HAC
estimator yields a well-behaved t statistic 2.23, very close to 1.96. We show in this paper
what is important is the proportion b defined as b =M/T . It is found in our simulation that

1As their paper, we only concern ourselves with short horizon predictive regression throughout the paper.
Extension to long horizon regression is beyond the scope of the current project and left for future research.

2For a definition of the type I and type II spurious regression, see Chiarella and Gao (2002).
3where it has been shown that regression between two independent I (1) processes would result in spurious

statistical significance of t statistic.
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b = 0.05 yields closest approximation to standard normal, which can be seen to explain FSS
(2003a) by noticing 240/5000 = 0.048 ≈ 0.05. We hence generalize their result. Though we
show the convergent t test, by itself, does not completely solve the problem at hand, it does
alleviate the problem significantly in large sample and shed more light on it. In the second
section on Monte Carlo, we discuss further the issue of data mining and spurious regression
bias. Our result confirms that the ”largest R2” data mining criterion is probabilistically
associated with the more persistent stochastic variables. This, again, explains FSS’s (2003a,
b) simulation result. Importantly, in this paper, we do not inquiry the empirical validity of
their model, but rather we study their properties, taken their model as given, though some
comments will be given concerning this.
The rest of the paper is organized as follows. Section 2 provide a brief summary of

FSS (2003) findings. Some of the results mentioned above will be restated and emphasized.
Section 3 then will provide some classic spurious regression theory with nearly integrated
series fully derived in Phillips (1988) as our background theory. Section 4.1 presents easily-
derived analytical results for their model. Section 4.2 derives asymptotic theory suitable for
spurious regression in this setting and the theory is of interest in its own right. Section 5
reports the simulation results concerning the behavior of the convergent t test. Section 6
concludes. Standard notations are used throughout. ⇒ signifies weak convergence of prob-
ability measure. W (t) and V (t) are independent Wiener processes and Wcx (t) and Vcy (t)
are independent diffusion processes associated with regressor xt and regressand yt respec-
tively and Wcx (t) =

R t
0
exp (c (r − s)) dW (s) , Vcy (t) =

R t
0
exp (c (r − s)) dV (s). Proofs are

relegated to a technical appendix.

2 Simulation results from FSS (2003a, b)

FSS’s (2003a, b) simulation investigation is based on the following standard model of stock
return. Let rt+1 be the future stock return, Z

∗
t be the unobserved latent variable in DGP

which is interpreted as the (unobserved) expected stock return. The DGP for future stock
return from FSS (2003a) is4

rt+1 = µ+ Z∗t + ut+1
5where ut+1 is mean zero white noise with variance σ

2
u. The predictive regression, in stead,

is obtained by regressing rt+1 on a constant and a lagged (observed) predictor variable Zt,
that is

rt+1 = α̂+ β̂Zt + v̂t+1

4Cochrane’s textbook (2001) presents a very similar model and obtain a result similar to our lemma 1
below. And this model can be well thought of as a unobserved component model.

5The intercept term in FSS calibration is very close to 0. So in our theoretical development, we will
assume a zero mean in the DGP for the dependent variable. Nevertheless, our qualitative results remain the
same regardless of inclusion of a constant term.
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They also assume the DGP for Zt and Z∗t to be
6⎛⎝ Z∗t

Zt

⎞⎠ =

⎛⎝ ρ∗ 0

0 ρ

⎞⎠⎛⎝ Z∗t−1

Zt−1

⎞⎠+
⎛⎝ ε∗t

εt

⎞⎠
Where ε∗t (variance of which is σ

2
∗) is independent of εt. In words, they are considering a

situation where researchers, in hope for predicting stock returns, come up with a completely
irrelavent predictor Zt, which is highly autocorrelated when ρ is close to 1. Naturally,
what a researcher wants from performing a significance test on regression parameter β̂ is an
insignificant statistic (irrespective of the degree of autocorrelation in Zt). However, just like
the classic spurious regression problem demonstrated by Granger and Newbold (1974), FSS
shows using simulation the spurious significance of t statistic in the above decribed financial
economics context, when both ρ∗ and ρ are close to 1. What they further consider is the
interaction between data mining and spurious regression bias, which we further describe
below.
Different from the original work of Granger and Newbold (1974), FSS assume their

hypothetical analyst uses the popular HAC t statistic based on Newey-West standard error
estimator when examining the statistical significance of the slope estimate, i.e.

tHAC =
β̂ − β

Ŝ

where the ordinary least squares estimate of β is given by

β̂ =

PT
t=1

¡
Zt − Z̄

¢
(rt+1 − r̄)PT

t=1

¡
Zt − Z̄

¢2
where Z̄ =

PT
t=1 Zt/T and r̄ =

PT
t=1 rt/T and the Newey West estimator Ŝ is given by

Ŝ2 = T Ω̂

Ã
TX
t=1

¡
Zt − Z̄

¢2!−2
where

Ω̂ =
T−1X

j=−T+1
k

µ
j

M

¶
Γ̂ (j) ,

Γ̂ (j) =

⎧⎨⎩ 1
T

PT−j
t=1

¡
Zt+j − Z̄

¢
v̂t+j v̂t

¡
Zt − Z̄

¢
for j ≥ 0

1
T

PT
t=−j+1

¡
Zt+j − Z̄

¢
v̂t+j v̂t

¡
Zt − Z̄

¢
for j < 0

6As mentioned above, the same model has been proposed in Conrad and Kaul (1988).
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and k (.) is the kernel function andM is the bandwidth. Notice, to get a consistent estimator
of the HAC standard error, one necessary condition is M → ∞, M/T → 0 as T → ∞. In
case of Newey-West estimator, the kernel function is as follows,

k (x) =

⎧⎨⎩ 1− |x| for |x| ≤ 1,

0 for |x| > 1,

In most of FSS’s simulation, they used a testing procedure to determine the truncation
lag M in the above variance estimator. Since we will frequently refer to FSS’s simulation
results, we summarize their main findings as follows.

1. the OLS estimate of β is well-behaved. In their case, β̂ are all very close to 0.

2. HAC t test is spuriously biased towards rejection and the magnitude of spurious re-
gression bias in HAC t depends on several parameters: ρ, ρ∗ and true R2, defined
as

true R2 =
V ar (Z∗)

V ar (Z∗) + σ2u

Recalling the definition of Z∗ and σ2u, this quantity is interpreted as the measure of fit
if one actually observes the true underlying expected return. They find as ρ and ρ∗7

get closer to 1 and true R2 gets larger, the HAC t test is more and more biased. And
fixing ρ and ρ∗ at values close to 1, the bias is increasing in magnitude of true R2,
and likewise, fixing a true R2, the bias is increasing in ρ and ρ∗.

3. The (first order) regression residual autocorrelation is not highly inflated.

4. In large sample size, a huge number of lags in construction of Newey-West variance
estimator “can” control the spurious regression problem. Of particular interest is a
simulation reported in their footnote 7. with sample size T = 5000, their choice of
truncation lag M = 240 in the construction of HAC estimator yields a well-behaved
t statistic 2.23, very close to 1.96. But they do not recommend this because of the
arbitrariness and lack of theoretical support involved in this construction.

5. The data mining and spurious regression re-enforce each other. They show again
through simulation in a set of to-be-mined predicting instruments, more persistent
variable is more likely to be chosen based on largest R2 criterion. Hence, when analyst
has searched among many potential regressors for one that produces a largest R2 in
the predicting regression, he or she is more likely to run into the problem of spurious
regression bias.

The rest of the paper will address all these findings. Specifically, we will provide asymp-
totic theory which could explain all these results. For result 4 above, our simulation reveals
interesting explanation as mentioned in the introduction section of the paper.

7In most of their reported simulations, they set ρ and ρ∗ equal.
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3 Background theory: nearly integrated case

For reasons that will be clear soon, we first state some asymptotic results on spurious regres-
sion involving independent nearly integrated processes, which are special cases of Phillips
(1988). We also state the asymptotic behavior of t statistic with HAC variance estimator.
Since this is what is used in FSS simulation, it will be more important in the context than
the naive t statistic. Specifically, we consider the regression as described in last section,
using different but more general notations,

yt = α̂+ β̂xt + ût, t = 1, ..., T

and the DGP’s generating yt and xt are

yt = exp
³cy
T

´
yt−1 + vt, t = 1, 2, ...

xt = exp
³cx
T

´
xt−1 + wt, t = 1, 2, ...

exp
³ c
T

´
∼ 1 + c/T

where vt and wt satisfies the assumption stated below. Let {ζt}∞1 be a sequence of random
n-vectors defined on measure space (Ω, B, P ) and St =

Pt
j=1 ζj be the partial sum process

and set S0 = 0. In our case, ζt = (vt, wt)
0 . We use γs the sth order autocorrelation.

• Assumption 1 (Phillips(1986)): Error condition
(1) E (ζt) = 0 for all t;

(2) supi,tE
¯̄
ζ i,t
¯̄β+�

<∞ for some β > 2 and � > 0;

(3) Σ = limT→∞ T−1E (STS
0
T ) exists and is positive definite;

(4) {ζt}∞1 is strong mixing with mixing numbers αm satisfying
P∞

1 α
1−2/β
m <∞

Notice, importantly, the covariance matrix between vt and wt in spurious regression setup
is diagonal so that the dependent and independent variables are independent with each other.
We will state the stochastic order of the statistics considered, for limiting distribution,

see Phillips (1988, 1998).

• Assumption 2 (Sun (2005)): Kernel condition
We impose the following conditions on the kernels used in construction of HAC variance
estimator to ensure positive definiteness, i.e. the kernels belong to the following class,

K =

½
k (.) : [−1, 1]→ [0, 1] |k (x) = k (−x) , k (0) = 1, and

Z 1

−1
k (x) e−iλxdx ≥ 0 ∀λ ∈ R

¾
We also let M to be the truncation lag (or bandwidth). Obviously, the Barlet Kernel

used in Newey-West estimator satisfies this condition.
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Lemma 1 8(Phillips (1988, 1998))

β̂ = Op (1) ;T
−1/2tβ = Op (1) ;R

2 = Op (1) ;

TDW (Durbin Watson) = OP (1) ;T (γs − 1) = Op (1) ;
p
M/TtHAC

β = Op (1) .

Notice, the last result is reported in Phillips (1998) while the rest can be found in Phillips
(1988). These results imply that for nearly integrated processes, spurious regression still
exists. In particular, a conventional (HAC) t test on the regression coefficient will result
in spurious significance9. Also notice that in this case DW statistics converges to 0 at rate
T and residual autocrrelation converges to 1 at rate T as well. Therefore, Caution must
be taken when the processes are not exactly integrated (of order 1), but rather close to
integrated. This implication itself should not be a surprise at all, since nearly integrated
process is asymptotically integrated (see Elliott and Stock, 1994).

Remark 1 These results, to some extent, also explain in a local asymptotic framework some
of the simulation results in Granger, Hyung, and Jeon (2001), where they consider the spu-
rious regression issue with stationary series.

4 Theory

4.1 Analytical results and observational equivalence

In this section, we try to achieve two goals. First, we will establish two simple lemmas
derived directly from FSS’s stock return model. And then based on these two lemmas, we
show how the classic asymptotic theory introduced in the previous section can shed light on
FSS’s simulation results. However, we will also point out most of the interesting findings
in FSS (2003a,b) can not be explained by the classic theory. Overall, we show there is a
definite need for an alternative theory.
The following two lemmas provide easily derived analytical results and explain many

of FSS simulation findings together with classic theory. The first lemma shows that this
setup implies (obviously) an ARMA(1,1) representation for the stock returns, which is a
well-known result. Following footnote 8, We will set µ = 0 from now on.

Lemma 2 The model specified above implies the following ARMA(1,1)10 representation for
rt+1

rt+1 = ρ∗rt + ηt+1 + θηt

8We ignore the results on OLS estimate of α since it is not the primary concern of our study.
9Recall the necessary condition on the relative rate of M and T for a consistent HAC estimator.
10An ARMA(1,1) representation for stock return has a long history in financial economics. Fama and

French (1988) presents a stock price model which implies the return has an ARMA(1,1) representation.
See also the discussion in Perron and Vodounou (1998). Cochrane (2001) also derives a similar univarite
representation for stock return. However, this model has been challenged by many others recently. Shively
(2000) and Khil and Lee (2002) propose an ARMA(2,2) representation for stock returns which captures the
empirical finding of positive short-horizon autocorrelation and negative long-horizon autocorrelation.
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where ηt is serially uncorrelated and the variance of which σ2η and θ satisfy the following
system, where we also impose an invertibility condition,⎧⎨⎩ σ2∗ + (1 + ρ2∗)σ

2
u =

¡
1 + θ2

¢
σ2η

θ = −ρ∗σ2u
σ2η

, |θ| < 1
(1)

The proof is simple by observational equivalence argument, hence omitted.

Remark 2 The lemma first says stock return will inherit the first order autoregressive per-
sistence from the expected stock return Z∗. If Z∗ is highly persistent as FSS conjectures, so
is the 1st order AR persistence of stock returns. However, the stylized fact that stock return
itself has far less first order autocorrelation than the commonly used predicting variables,
like dividend price ratio11, implies there is more to say. Indeed, given the strict positiv-
ity of persistence parameter ρ∗ and σ2u, the MA coefficient in the ARMA representation is
strictly negative. θ hence generates cancelling effect on the observational persistence of stock
returns12. To match the feature of stock returns, ρ∗ and |θ| must be close to each other.
And the ARMA representation can be said to be observationally equivalent (with respect to
the covariance structure) to the observed stock returns behavior. FSS notice that the dif-
ference between their model and the ”classic” one as studied in Phillips(1986) is that they
allow nonzero and possibly large variance of ut in order to ”accommodate the large noise
component of stock returns”. But as we have shown above, nonzero variance σ2u is needed
to accommodate the fact that the observed stock return is (observationally) not first order
persistent, otherwise, this model can not be justified in the first place. However, what is true
is that the process rt+1 still has a near unit root when the ρ

∗ is conjectured near unity. If ρ
is also close to unity, then the regression of rt+1 on Zt will incur the spurious bias. This is
nothing but a direct implication of classic spurious regression results and lemma 1 developed
above. And very intuitively, the bias depends on both ρ∗ and |θ| . The closer the two are, the
less the bias (provides ρ∗ is sufficiently close to 1, i.e. close to ”problem region”).

Lemma 3 σ2u
σ2η
↑ 1 as σ2u →∞

The proof follows from straightforward manipulation of system (1) and hence omitted.

Remark 3 Notice this lemma further implies that |θ| ↑ ρ∗ as σ2u → ∞. Hence, the larger
the σ2u, the stronger the cancellation between θ and ρ∗ will be. And in the limit, the stock
return rt+1 will be serially uncorrelated. The intuition behind this lemma is simple. As the

11Campell, Lo and Mackinlay (1997)’s table 2.4 reports some estimated autocorrelations of the CRSP
indexes on daily, weekly, and monthly frequencies. The estimated maximum first order autocorrelation 0.43
for CRSP equal-weighted index on 62:07:03-78:10:27 sample period, while at weekly and monthly frequencies
(FSS studies monthly returns), the autocorrelation is a lot less with a maximum of 0.21.
12This should remind us of the well-known (nearly) observational equivalence in unit root testing. See

Campbell and Perron (1991) for an excellent non-technical introduction.
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variability of noise term becomes dominant in returns (σ2u →∞), the return itself will behave
more like ”white noise”13. Notice the connection with the true R2 defined in FSS (2003a,
2003b). In their setup, V ar (Z∗) is a fixed constant14, therefore, controlling true R2 as FSS
(2003a, 2003b) did is equivalent to controlling σ2u and hence to controlling the observational
persistence of rt+1, hence together with ρ∗, the likelihood of spurious regression. Let us sum
up what we have learned–the smaller the true R2 implies the larger the σ2u, the closer θ
and −ρ∗, the stronger the cancellation, the less autocorrelation should be observed in stock
returns, and the less the spurious bias (given ρ∗ is close to 1). This is partially justified
by what they find out through simulation. ”...spurious regression bias does not arise to any
serious degree, provided ρ∗ is 0.90 or less, and the true R2 is one percent or less”. The first
qualification is easy to understand in our analytical framework as well. Obviously, when ρ∗

is not close to 1, rt+1 is not a nearly integrated process (so is the regressor Zt since in most
cases, they set ρ∗ = ρ), hence spurious regression bias is not expected to occur15.

To get a sense of the relative magnitude of ρ∗ and the implied θ, in Table I, we report
some of the θ values corresponding to various ρ∗ and the true R2 used in FSS (2003a, b).
As we can see from Table I, the behavior of θ is exactly the same as we describe above.
The message of the above discussion is that FSS spurious regression may be well expected

from our background theory since the variables involved are all close to the “problem” region.
With the knowledge we gain from above discussion, it is intuitively not surprising to

learn some of the rest of their simulation results. For example, the spurious regression bias
becomes severe when a more plausible ρ ≥ 0.95 (since the predictor variables, like dividend
yield, are usually highly autocorrelated.) and true R2 = 10% is used in simulation. Also,
it is not difficult to understand why FSS finds out ”only mildly inflated residual autocor-
relations...samples as large as T = 2000” whereas Phillips (1986) shows that the sample
autocorrelation converges to 1 at rate T . FSS also provides an intuitive explanation of this
observation. In fact, it can be better understood in current framework. As their simulation
shows the slope estimate is relatively well-behaved, the residual inherits the ARMA structure
of stock returns and due to the cancellation effect of θ and ρ, one should not expect to see
much observational first order autocorrelation16.
Although the FSS framework is seen to be to closely related to the classic setting (as the

nearly integrated case), the asymptotic theory developed by Phillips (1986) is not expected
to be an appropriate approximation in finite sample of their case. In particular, classic
asymptotic theory is unable to provide an explanation for the following two major findings
in FSS (2003a, b): (1) the OLS estimate of slope parameter β̂ is well-behaved, (2) the
residual autocorrelation is not highly inflated (given Phillips (1986) shows it converges to

13See also Campbell (2001).
14They set it to equal the sample variance of the S&P 500 return, in excess of a one-month Treasury bill

return, multiplied by 0.10.
15FSS also find that when ρ∗ = 0 there is no spurious regression bias. This result also follows straightfor-

wardly from the above discussion since then rt+1 becomes stationary.
16Thus, this model has pretty strong implication concerning the (excess) stock return process. Hence,

their model could be checked by estimating such a model from the data series.
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1). In next section, we will provide an alternative asymptotic theory for this and other
simulation results.

4.2 More asymptotic theory: nearly integrated, nearly white noise

One of the reasons that Phillips’ (1986) asymptotics may not be adequate in explaining
FSS’s findings is because his asymptotics do not capture the fact that dependent variable
(the stock returns) behaves like nearly white noise, but has strong AR persistence (with
cancelling MA persistence). However, this feature fits well in the asymptotic framework of
nearly white noise developed in Nabeya and Perron (1994), see also Ng and Perron (1996).
The asymptotics are based on the following local-to-unity specification. Assuming {et} to
be i.i.d. (0, σ2e),

yt = (1 + c/T ) yt−1 + ut,

ut = et + γTet−1,

γT = −1 + δ/
√
T

yt is then nearly integrated in finite sample, but a white noise in the limit. What we will study
here is the issue of spurious regression in this framework. Specifically, we develop asymptotic
theory when a nearly white noise process yt is regressed on an independent (nearly) integrated
process xt

17 and an intercept term, the estimate of which is denoted α̂. We study the
behavior of several statistics. Results are collected in the following theorem. Once again,
since FSS used the HAC-based t test in their simulation, we will report this particularly
important asymptotic result as well. And these results are of independent interest, too.
Notice, importantly, the qualitatively same results can be easily obtained when the regressor
xt is exactly integrated. In what follows, let e∞ (r) = limT→∞ e[Tr]/σe. And we only present
the result on residual first order autocorrelation, but as we show in the appendix, higher
order autocorrelations can be easily obtained.

Theorem 1 1.

√
T β̂ ⇒

σwσe
nR 1

0
(e∞ (r) + δVc (r))Wcx (r) dr − δ

R 1
0
Vc (r) dr

R 1
0
Wcx (t) dt

o
σ2w

½R 1
0
Wcx (t)

2 dt−
³R 1

0
Wcx (t) dt

´2¾ , σe
σw

κ

2.

α̂⇒ σe

µ
δ

Z 1

0

Vc (r) dr − κ

Z 1

0

Wcx (t) dt

¶
17Durlauf and Phillips (1988) study the asymptotic regression theory of yt being stationary, and the

regressors include xt being integrated, an intercept and a first order time trend.
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3.

T−1/2tβ ⇒ µ/v1/2 where,

µ =

Z 1

0

(e∞ (r) + δVc (r))Wcx (r) dr − δ

Z 1

0

Vc (r) dr

Z 1

0

Wcx (t) dt

v =

Ã
1 + δ2

Z 1

0

Vc (r)
2 dr − δ2

µZ 1

0

Vc (r) dr

¶2!ÃZ 1

0

Wcx (t)
2 dt−

µZ 1

0

Wcx (t) dt

¶2!

−
½Z 1

0

(e∞ (r) + δVc (r))Wcx (r) dr − δ

Z 1

0

Vc (r) dr

Z 1

0

Wcx (t) dt

¾2
4.

R2 ⇒
κ2
½R 1

0
Wcx (t)

2 dt−
³R 1

0
Wcx (t) dt

´2¾
1 + δ2

R 1
0
Vc (r)

2 dr − δ2
³R 1

0
Vc (r) dr

´2
5.

DW ⇒ ς/τ , where,

ς = 2

τ =

µ
1 + δ2

Z 1

0

Vc (r)
2 dr

¶
− κ2

(Z 1

0

Wcx (t)
2 dt−

µZ 1

0

Wcx (t) dt

¶2)

6.

γ1 =

PT
2 ûtût−1PT
1 û

2
t

⇒ B

D
, where

B = δ2
Z 1

0

Vc (r)
2 dr − δ2

µZ 1

0

Vc (r) dr

¶2
−2κ

½Z 1

0

(e∞ (r) + δVc (r))Wcx (r) dr − δ

Z 1

0

Vc (r) dr

Z 1

0

Wcx (t) dt

¾
+κ2

"Z 1

0

Wcx (r)
2 dr +

Z 1

0

Wcx (r) dW (r)−
µZ 1

0

Wcx (r) dr

¶2#

D =

Ã
1 + δ2

Z 1

0

Vc (r)
2 dr − δ2

µZ 1

0

Vc (r) dr

¶2!
− κ2

(Z 1

0

Wcx (t)
2 dt−

µZ 1

0

Wcx (t) dt

¶2)

7. r
M

T
tHAC
β ⇒ κ

F−2
R 1
0

R 1
0
H (r)G (r) k (r − s)G (s)H (s) drds
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where

F =

Z 1

0

Wcx (t)
2 dt−

µZ 1

0

Wcx (t) dt

¶2
G (r) = σe

µ
e∞ (r) + δVc (r)− δ

Z 1

0

Vc (r) dr

¶
− σeκ

µ
Wcx (r)−

Z 1

0

Wcx (r) dr

¶
H (r) = Wcx (r)−

Z 1

0

Wcx (t) dt

The above results are interesting. They show some both qualitatively and quantitatively
different properties from most of the existing spurious regression theory.

Remark 4 Result 1 and 2 contrast with others by showing that OLS estimate β̂ is still
consistent at usual rate

√
T and now the intercept estimate has a nondegenerate limit dis-

tribution. This explains why FSS simulation finds β̂ to be actually well-behaved. See their
Table II and related discussion.

Remark 5 Result 3 says that the conventional t statistics will still diverge at the rate
√
T

resulting in spurious rejection. In view of result 1, we know the exclusive reason for diverg-
ing t statistic is the inconsistent estimate of the variance term. This also justifies FSS’s
suggestion that in finite sample, variance estimate, but not OLS slope estimate, is the major
concern. Therefore, both simulation and asymptotic theory indicates the way to solve the
problem of spurious regression is to get a well-behaved variance estimate.

Remark 6 Result 4 shows R2 has a nondegenerate limiting distribution and hence FSS’s
theoretical R2 derived from the F distribution is not appropriate. Result 5 shows that DW
statistic has a nondegenerate limiting distribution, which is a complicated function of nui-
sance parameter and functional of diffusion and Wiener processes. This is different from
previous result.

Remark 7 Result 6 shows that the residual first order autocorrelation converges to a limiting
random variable, unlike the Phillips’ result that says autocorrelation converges to 1 at very
fast rate T . Recall FSS finds that the autocorrelation not inflated and also points out this
result is not compatible with Phillips (1986)’s theory. Here, we show under our asymptotic
framework their Monte Carlo result can be explained as r no longer converges.

Remark 8 Result 7 shows further similarity with the classic spurious regression. It shows t
test based on HAC variance estimator is still divergent given the well-known HAC estimation
consistency requirement M → ∞, M/T → 0 as T → ∞. The same rate of divergence has
been obtained in Phillips (1998) for classic spurious regression model. This result is relevant
here because it explains FSS spurious rejection result.
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From the above results, we believe the spurious regression bias of this kind may be
more serious than others, especially compared with the classic spurious regression bias in
Phillips (1986, 1988) and Durlauf and Phillips (1988). This is because several commonly
used statistics (like DW , r1) have nondegenerate distributions. Thus, there is no simple
”rule of thumb” for us to even get alerted by using conventional statistics.
Recently, a type of long run variance estimator is becoming popular. This class of es-

timator uses the kernel-based method, but without truncation, i.e. the bandwidth is equal
to sample size, i.e. M = T or more generally with truncation lag being a fixed proportion
of sample size, i.e. M = bT where b is a fixed constant. It is shown in many situations
that such an estimator can improve the performance of a test statistic, which is how such
estimator was motivated. Sun (2002, 2005) considers the spurious regression issue using
standard asymptotics, where the author shows once such an variance estimator is used, t
statistic will have a well-defined distribution under null. He also shows by simulation using
a properly selected b could alleviate the spurious regression problem in the context of his
interest. We will follow these ideas and develop the corresponding theory in our case. This
study is relevant because as FSS find out when they used a very long lag in case of a large
sample (which could potentially corresponds to a fixed b.), the spurious regression problem
can be reduced18, but they don’t recommend it due to extreme large sample they believe it
requires and the difficulties (or arbitrariness) in deciding how ”long” the lag should be. We
will further comment on this piece of their finding in next section. We use tβ,b to denote
this version of t statistic and signify the dependence of it on b. It is stated as a corollary to
theorem 1.

Corollary 1 Let M = bT , for some b ∈ (0, 1] then

tβ,b ⇒
κ

F−2
R 1
0

R 1
0
H (r)G (r) k

¡
r−s
b

¢
G (s)H (s) drds

where F, H, and G are defined as in Theorem 1.

It shows the t statistic then has a well-defined distribution, which is what to expect given
result 6 in Theorem 1. Before moving on to the next section, we note that the above de-
rived limiting distributions could be potentially used for performing hypothesis testing. The
difficulty lies in the localizing parameter c and δ since they can’t consistently estimated with-
out strong assumptions19, see for example, Elliott and Stock (1994). However, conservative
bound test can also be constructed as in Cavanagh et al (1995), Torous et al (2005), Camp-
bell et al (2003) etc.. But the problem at hand may be a little more involved since we have
two localizing parameters in stead of one, which could result in very conservative procedures.
We do not pursue this direction in the present paper, but hope to investigate these in future

18See FSS (2003a) footnote 7.
19Phillips and Moon (2000) propose a way to consistently estimate c in panel data, but with restrictive

assumption that the localizing parameters in each cross section series be the same. Phillips et al (2001)
propose a new block local to unity model in which c can be consistently estimated.
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research. Another possible extension is to study the finite sample approximation of these
asymptotic distributions. It can be done by either simulation or numerical integration. In
the next section on Monte Carlo, we will report the simulation concerning convergent t test
and the interaction between data mining and spurious regression bias. Further interesting
finding will emerge.

5 Monte Carlo

5.1 Convergent t statistic

In this subsection, we try to answer the following question: can we reduce the size of spurious
problem by using this statistic with normal critical values20? A yes to this question means
we can be agnostic about the spurious bias and conventional distribution is (approximately)
valid. The answer to this question certainly depends on the kernel and the fixed proportion
b one chooses. We hence conduct a simulation study. We will be using the Bartlet kernel as
in Sun (2005) and leave the other choices of kernel as future research. All simulation is done
with 500021 replications in programming language Matlab. The other parameter values we
use in simulation are:

1. T : T ∈ (66, 824)

2. ρ : ρ ∈ (0.9, 0.95, 0.98, 0.99)

3. True R2 : true R2 ∈ (0.01, 0.05, 0.10, 0.15)

4. b : b ∈ (0.01, 0.025, 0.05, 0.10, 0.20, ..., 0.9)

This selection is based on theoretical consideration as well as the purpose of an easy
comparison with FSS (2003a, b) results and Sun (2002, 2005). The goal here is to find the
”best” b in the sense that the approximation to standard normal is the best. Specifically, we
accomplish the following two experiments.

1. M = bT with Bartlet window for various values of b, T, true R2, and ρ;

2. For T = 5000, true R2 = 10%, and ρ = 0.98 with Barlet window with various b.

Experiment 2 is a response to the the comment made by FSS (2003a), see their footnote 7,
also mentioned above. In fact, this experiment can be regarded as simulating the approximate
asymptotic distribution given T = 5000.

20This question follows from Sun (2005), where the author shows using convergent t test with normal
critical value performs better than the naive non-HAC t test.
21We have replicated some of FSS (2003a)’s simulation results and find, though with a smaller number of

replications, our simulated t values differ theirs only at 1000th decimal. Hence, we can safely compare our
simulation results with theirs.
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We simulate the data series the same way as FSS (2003a) did. We record some represen-

tative entries for the 97.5% critical t
w/o
β (i.e. the statistic with M = T ) in Table II and those

for tβ,b in Table III for b = 0.01, 0.025, 0.05, 0.1, 0.2, 0.3. We also plotted the kernel smoothed
density functions for a variety of parameter values in Figure 6.1 through 6.422. Results for
other values of b are available upon request.
The general conclusion is that all the distributions have heavier tails than the standard

normal, hence leads to spurious rejection. In particular, the distribution with T = M
represents a substantial departure from the standard normal, a lot worse than the HAC
with truncation in FSS (2003a, 2003b), in that this distribution has a lot thicker tail. On a
micro scale, we want to compare the relative closeness of these distributions to the standard
normal. We find somewhat mixed results. For sample size T = 824, b = 0.10 and b = 0.05
seem to be very close to each other and both are the closest to the standard normal on
average, especially so when true R2 is large and ρ is close to 1, i.e. the ”problematic region”,
see Tables II and III together with Figures 1 through 423. If we compare the t values with
b = 0.05 with FSS Table II, we find ours are uniformly closer to 1.96. The most striking
difference is when T = 824, ρ = 0.99 and true R2 = 0.15 where FSS HAC t = 4.9151, while
ours is 3.9845, see our Table III, though in terms of testing, these two values are equally
”bad”. That b = 0.10 (also b = 0.05) is preferable in large sample is surprisingly the same
as Sun (2005), who found the same b produces the most desirable result in his fractional
integration context. However, with T = 66, smaller b seems to be slightly better. This
is not a surprise, though, because for a sample of this size, more lags basically add more
noise to the estimation, see also FSS (2003a, b). Furthermore, since financial data is usually
much larger than 66, this seems to be a less troublesome and relevant result. We therefore
conclude from this limited set of simulations, with a large enough sample size, b = 0.05 (or
b = 0.1 or any value in between) is a sensible choice to potentially alleviate the spurious
regression bias.
To provide further guidance, we try to provide a sense of largeness and the corresponding

size distortion incured by using the convergent t test. We thus studied three representative
sample sizes 1000, 1250, 1500 with the following specification–true R2 = 0.10, ρ = 0.98.
We find the t statistic decreases somewhat slowly, for T = 1000, 1250, 1500, the actual sizes
are 11.28%, 10.84% and 10.20% respectively at 5% nominal level for b = 0.05. We also verify
that for these sample sizes that b = 0.05 and 0.1 are indeed the preferable choices.
What is really interesting is that FSS reported a well-behaved t value 2.2324 when T =

5000, true R2 = 0.10, ρ = 0.98 and if they choose M = 240, which corresponds exactly to
b = 240/5000 = 0.048 ≈ 0.05. Our experiment 2 shows b = 0.10 yields a value of 2.38 and
b = 0.025 yields a value of 2.29, which are slightly higher. We also verified other b values
did not give a closer value, for example, b = 0.2 yields a value of 2.6428, b = 0.4 a value

22These densities are shown to be symmetric, therefore it makes sense to report our 97.5% critical value
alone. Also, the normal density is not plotted to ensure a better picture of the densities of interest.
23Especially for true R2 = 0.15 and ρ = 0.98, i.e. figure 3, they are just on top of each other. This implies

for b values between 0.05 and 0.1, the difference is minor.
24Our simulation gave the same value.
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of 3.2882. Figure 6.5 plots some of the densities with different b0s. And we can see that
when b = 0.05 and 0.10, the distributions are very close to standard normal. Further, with
T = 5000, the ”finite” sample distribution would not be very different from the asymptotic
distribution. Thus this ”large sample” experiment also confirms the preferable choice of
b = 0.05 (or b = 0.1 as the difference is very weak.) as in T = 824. Combining our results
for several different samples, we believe these values of b are indeed systematic.
Thanks to our finding, we have explained the simulation FSS conducted that their t

statistic is close to 1.96 because they happened to choose b = 0.05 which is the proportion
that makes the distribution in Corollary 1 close to standard normal in large sample. Although
by itself, the simple rule of thumb doesn’t resolve the problem completely, it does greatly
alleviate in large sample and shed more light on the problem at hand. Notice, when b = 0.05
and b = 0.10, the densities are very close to standard normal in large sample, see figure 5.
Finally, we note that in usual practice, the maximum lag is commonly set to be Int(12×

(T/100)1/4). This rule of thumb maximum lag is very small compared with the deterministic
rule of b = 0.05 when sample size is large, say over 400, which is common in financial data.
In the case of T = 824, fixed b-0.05 rule will dictate a lag value of 41, while conventional
method implies a maximum lag value of 21.
We summarize our simulation findings as follows.

a The distributions of t statistic with M = T represents a substantial departure from
the standard normal.

b The Bartlet window with b in the range of [0.05, 0.1] seems to produce the best ap-
proximation to standard normal in large sample.

c The small sample spurious regression problem remains by using the new convergent t
test unless one has a large sample.

5.2 Spurious regression and data mining

FSS (2003a, b) also discusses the interaction between pure spurious regression and data
mining, the latter of which has also been studied in Foster et al (1997). Their simulation
finding is that spurious regression effect interacts with data mining such that in a set of
to-be-mined instruments, the more persistent instrument variables will be chosen based on
the ”largest R2” criterion. Hence it worsens the spurious effect. In this section, we establish
a theoretical justification for this Monte Carlo result. Using our asymptotic theory, we
simulate the mean and median values of the R2 as a function of localizing parameters c
and δ. These are plotted in Figure 6.6 and Figure 6.7. In unreported simulation, we find
the distribution of R2 is unimodal, looking like a χ2 distribution. Hence, the mean and
median are two relevant measures of the location of large probability mass. What we find
provides surportive explanation for their result. That is, the mean and median of R2 are
monotonically decreasing in |c| uniformly in δ considered. Therefore, our results imply more
persistent ”predicting variables” are with higher probability to produce higher R2. This
provides a clear picture of the interaction between data mining and spurious regression bias.

16



6 Conclusion

The predicting variable in return predictive regression in finance is usually highly autocorre-
lated. By postulating the expected return to be persistent as well, FSS (2003a, 2003b) used
simulation to show these two facts together are an indication of possible spurious regression
in financial economics. They discovered some new results different from previous spurious
regression theory, which leads them to comment that their finding is well outside of the clas-
sic setting. In this paper, we derived simple implications of their model using observational
equivalence argument and provide new asymptotic theory for their Monte Carlo results. In
particular, the use of a new asymptotic framework, namely, nearly integrated-nearly white
noise framework, shows that finite sample behavior of several statistics can be predicted
by asymptotic theory. Altogether, we provide a unifying way of looking at their results
and the ”classic” spurious regression results. The main conclusion is the autocorrelation of
dependent variable should not be taken to be indicative of spurious regression bias. This
observation is important in applied work and is essentially a restatement of the doomed low
power of unit root test, see discussion on observational equivalence in Campbell and Perron
(1991). A convergent t statistic is also constructed, whose properties are studied in Monte
Carlo simulation. Our finding allows us to be able to explain an interesting simulation result
in FSS (2003a, b). A probablistic interpretation is provided for the interaction between
data mining and spurious regression bias. The implications from this study are general in
and outside of financial econometrics framework, in particular, it may have implications for
monetary macroeconomics. Further econometric extensions include the study of alternative
kernels, and see if any other could make the distribution closer to standard normal hence
eventually eliminate the spurious regression problem. Of particular interest is the recently
proposed sharp orgin kernel. This is the subject of ongoing research.
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Technical Appendix
As is shown in Nabeya and Perron (1994), under the assumptions in the text, one can

write
yt = aT et + bTXt

where aT =
¡
1− δT−1/2

¢
exp (−c/T )→ 1, bT = 1− exp (−c/T )

¡
1− δT−1/2

¢
, so T 1/2bT → δ

and
Xt =

Pt
j=1 exp ((t− j) c/T ) et is a near-integrated process. We first state the following

useful lemma in Perron and Ng (1998) collected from Nabeya and Perron (1994) whose proof
is based on the above representation. Lemma A.2 is a direct result as well.

Lemma 4 (A.1) (Perron and Ng (1998)). Let {yt} be generated as nearly white noise and
let e∞ (r) = limT→∞ e[Tr]/σe. Then as T →∞, (a) T−1

PT
t=1 y

2
t−1 ⇒ σ2e

³
1 + δ2

R 1
0
Vc (r)

2 dr
´
;

(b) T−1
PT

t=1 yt−1ut ⇒−σ2e, (c) y[Tr] ⇒ σ2e (e∞r + δVc (r)), and (d) T
−1PT

t=1 u
2
t ⇒ 2σ2e.

Lemma 5 (A.2) ȳ = T−1
PT

t=1 yt ⇒ δσe
R 1
0
Vc (r) dr

Proof of Lemma (A.2).

T−1
TX
t=1

yt = aTT
−1

TX
t=1

et + bTT
−1

TX
t=1

Xt

= aTT
−1

TX
t=1

et + T 1/2bTT
−1/2T−1

TX
t=1

Xt

⇒ δσe

Z 1

0

Vc (r) dr

where the last relation follows from an LLN for {et} and convergence results for aT and bT

Proof of theorem 1.

T 1/2β̂ =
T−3/2

P
ytxt − T−1/2ȳx̄

T−2
P
(xt − x̄)2

⇒
σwσe

nR 1
0
(e∞ (r) + δVc (r))Wcx (r) dr − δ

R 1
0
Vc (r) dr

R 1
0
Wcx (t) dt

o
σ2w

½R 1
0
Wcx (t)

2 dt−
³R 1

0
Wcx (t) dt

´2¾ , σe
σw

κ

because of standard asymptotic results for xt.
For the estimated intercept term, we have,

α̂ = T−1
X

yt − β̂T−1
X

xt

= ȳ − T 1/2β̂T−3/2
X

xt

⇒ δσe

Z 1

0

Vc (r) dr − σeκ

Z 1

0

Wcx (t) dt
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For (3), first consider

s2 = T−1
X

(yt − ȳ)2 − β̂
2
T−1

X
(xt − x̄)2

⇒ σ2e

(
1 + δ2

Z 1

0

Vc (r)
2 dr − δ2

µZ 1

0

Vc (r) dr

¶2)
− κ2σ2e

(Z 1

0

Wcx (t)
2 dt−

µZ 1

0

Wcx (t) dt

¶2)

Now,

T−1/2tβ =
T 1/2β̂

¡
T−2

P
(xt − x̄)2

¢1/2
s

⇒
σe
nR 1

0
(e∞ (r) + δVc (r))Wcx (r) dr − δ

R 1
0
Vc (r) dr

R 1
0
Wcx (t) dt

o
σw

½R 1
0
Wcx (t)

2 dt−
³R 1

0
Wcx (t) dt

´2¾
×σw

(Z 1

0

Wcx (t)
2 dt−

µZ 1

0

Wcx (t) dt

¶2)1/2

÷σe

((
1 + δ2

Z 1

0

Vc (r)
2 dr − δ2

µZ 1

0

Vc (r) dr

¶2)

−κ2
(Z 1

0

Wcx (t)
2 dt−

µZ 1

0

Wcx (t) dt

¶2))1/2
=

½Z 1

0

(e∞ (r) + δVc (r))Wcx (r) dr − δ

Z 1

0

Vc (r) dr

Z 1

0

Wcx (t) dt

¾
÷
(Ã

1 + δ2
Z 1

0

Vc (r)
2 dr − δ2

µZ 1

0

Vc (r) dr

¶2!ÃZ 1

0

Wcx (t)
2 dt−

µZ 1

0

Wcx (t) dt

¶2!

−
½Z 1

0

(e∞ (r) + δVc (r))Wcx (r) dr − δ

Z 1

0

Vc (r) dr

Z 1

0

Wcx (t) dt

¾2)1/2
= µ/v1/2

, proving (b). Next,

R2 =

P
(ŷt − ȳ)2P
(yt − ȳ)2

=
β̂
2
T−1

P
(xt − x̄)2

T−1
P
(yt − ȳ)2

⇒
κ2
½R 1

0
Wcx (t)

2 dt−
³R 1

0
Wcx (t) dt

´2¾
1 + δ2

R 1
0
Vc (r)

2 dr − δ2
³R 1

0
Vc (r) dr

´2
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We next consider Durbin Watson statistic,

DW =

PT
2 (ût − ût−1)

2PT
1 û

2
t

=
T−1

PT
1

³
yt − yt−1 − β̂ (xt − xt−1)

´2
T−1

PT
1

³
yt − ȳ − β̂ (xt − x̄)

´2

T−1
TX
1

³
yt − yt−1 − β̂ (xt − xt−1)

´2
= T−1

TX
1

³cy
T
yt−1 + ut − β̂

³cx
T
xt−1 + wt

´´2
= T−1

TX
1

u2t + T−1β̂
2

TX
1

w2t − 2β̂T−1
TX
1

utwt

= 2σ2e

since the last two terms go to 0. Therefore

DW =
2µ

1 + δ2
R 1
0
Vc (r)

2 dr − δ2
³R 1

0
Vc (r) dr

´2¶
− κ2

½R 1
0
Wcx (t)

2 dt−
³R 1

0
Wcx (t) dt

´2¾
Now, consider r1. We have shown that

s2 = T−1
TX
1

û2t = T−1
TX
1

³
yt − ȳ − β̂ (xt − x̄)

´2
⇒ σ2e

Ã
1 + δ2

Z 1

0

Vc (r)
2 dr − δ2

µZ 1

0

Vc (r) dr

¶2!
− κ2σ2e

(Z 1

0

Wcx (t)
2 dt−

µZ 1

0

Wcx (t) dt

¶2)
Consider

T−1
TX
2

ûtût−1 = T−1
TX
2

³
yt − ȳ − β̂ (xt − x̄)

´³
yt−1 − ȳ − β̂ (xt−1 − x̄)

´
= T−1

TX
2

(yt − ȳ) (yt−1 − ȳ)− T−1
TX
2

β̂ (xt−1 − x̄) (yt − ȳ)
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The first term in (A):

T−1
TX
2
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TX
2
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TX
2
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TX
2

yt−1ȳ + T−1
TX
2

ȳ2

= T−1
TX
2

ytyt−1 − ȳ2
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So consider

T−1
TX
2

ytyt−1 = T−1
TX
2

(yt−1 + ut) yt−1 = T−1
TX
2

y2t−1 + T−1
TX
2

utyt−1

⇒ σ2e

µ
1 + δ2

Z 1

0

Vc (r)
2 dr

¶
− σ2e = σ2eδ

2

Z 1

0

Vc (r)
2 dr

The Second term in (A):

T−1
TX
2

β̂ (xt−1 − x̄) (yt − ȳ) →
³
T 1/2β̂

´
T−3/2

TX
2

(xt−1 − x̄) yt −
³
T 1/2β̂

´
T−3/2ȳ

TX
2

(xt−1 − x̄)

=
³
T 1/2β̂

´"
T−3/2

TX
2

xt−1yt − T−1/2x̄T−1
TX
2

yt

−ȳT−3/2
TX
2

xt−1 + ȳT 1/2x̄

#

= σ2eκ

½Z 1

0

(e∞ (r) + δVc (r))Wcx (r) dr − δ

Z 1

0

Vc (r) dr

Z 1

0

Wcx (t) dt

¾
The Third term in (A):

T−1
TX
2

β̂ (xt − x̄) (yt−1 − ȳ)⇒ σ2eκ

½Z 1

0

(e∞ (r) + δVc (r))Wcx (r) dr − δ

Z 1

0

Vc (r) dr

Z 1

0

Wcx (t) dt

¾
The last term in (A):

T−1
TX
2

β̂
2
(xt − x̄) (xt−1 − x̄) =

³√
T β̂
´2

T−2
TX
2

(xt − x̄) (xt−1 − x̄)

=
³√

T β̂
´2 "

T−2
TX
2

xtxt−1 − T−2x̄
TX
2

xt − T−2x̄
TX
2

xt−1 + T−2
TX
2

x̄

⇒ (σeκ)
2

"Z 1

0

Wcx (r)
2 dr +

Z 1

0

Wcx (r) dW (r)−
µZ 1

0

Wcx (r) dr

¶2#
So,

T−1
TX
2

ûtût−1 = σ2e

Ã
δ2
Z 1

0

Vc (r)
2 dr − δ2

µZ 1

0

Vc (r) dr

¶2!

−2σ2eκ
½Z 1

0

(e∞ (r) + δVc (r))Wcx (r) dr − δ

Z 1

0

Vc (r) dr

Z 1

0

Wcx (t) dt

¾
+(σeκ)

2

"Z 1

0

Wcx (r)
2 dr +

Z 1

0

Wcx (r) dW (r)−
µZ 1

0

Wcx (r) dr

¶2#
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Finally,

r1 =

PT
2 ûtût−1PT
1 û

2
t

⇒ B

D
, where

B = δ2
Z 1

0

Vc (r)
2 dr − δ2

µZ 1

0

Vc (r) dr

¶2
−2κ

½Z 1

0

(e∞ (r) + δVc (r))Wcx (r) dr − δ

Z 1

0

Vc (r) dr

Z 1

0

Wcx (t) dt

¾
+κ2

"Z 1

0

Wcx (r)
2 dr +

Z 1

0

Wcx (r) dW (r)−
µZ 1

0

Wcx (r) dr

¶2#

D =

Ã
1 + δ2

Z 1

0

Vc (r)
2 dr − δ2

µZ 1

0

Vc (r) dr

¶2!
− κ2

(Z 1

0

Wcx (t)
2 dt−

µZ 1

0

Wcx (t) dt

¶2)
higher order autocorrelation can be easily obtained analogously.
Next, consider the HAC t test. First,

û[Tr] =
¡
y[Tr] − ȳ

¢
− β̂

¡
x[Tr] − x̄

¢
⇒ σe

µ
e∞ (r) + δVc (r)− δ

Z 1

0

Vc (r) dr

¶
− σeκ

µ
Wcx (r)−

Z 1

0

Wcx (r) dr

¶
Then, following Sun (2005), we write T 2

M
σ2HAC asÃ

1

T 2

TX
t=1

(xt − x̄)2
!−2

1

T 2

TX
t=1

TX
s=1

(xt − x̄)√
T

ûtk

µ
r − s

T

¶
ûs
(xs − x̄)√

T

⇒ σ−2w F−2
Z 1

0

Z 1

0

H (r)G (r) k (r − s)G (s)H (s) drds

where

F =

Z 1

0

Wcx (t)
2 dt−

µZ 1

0

Wcx (t) dt

¶2
G (r) = σe

µ
e∞ (r) + δVc (r)− δ

Z 1

0

Vc (r) dr

¶
− σeκ

µ
Wcx (r)−

Z 1

0

Wcx (r) dr

¶
H (r) = Wcx (r)−

Z 1

0

Wcx (t) dt

Therefore,r
M

T
tHAC
β =

√
T β̂

T√
M
σHAC

⇒ κ

F−2
R 1
0

R 1
0
H (r)G (r) k (r − s)G (s)H (s) drds

Proof of Corollary 1. The proof follows directly those of result 6 in theorem 1.
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Table I: the implied θ

ρ∗/R2 0.01 0.05 0.10 0.15

0.9 -0.8914 -0.8616 -0.8306 -0.8029

0.95 -0.9412 -0.9143 -0.8883 -0.8660

0.98 -0.9718 -0.9509 -0.9324 -0.9169

0.99 -0.9827 -0.9665 -0.9528 -0.9414

Note: In computing these values, we also used the calibrated V ar (Z∗) as described in
FSS(2003a)

Table II: 97.5% Critical /t
w/o
β without truncation

Bartlet Kernel

T = 66

R2/ρ∗ 0.9 0.95 0.98 0.99

0.01 5.8056 6.0040 5.8316 5.8462

0.05 6.4760 6.0823 6.1775 6.2418

0.10 6.5238 6.7656 6.8125 6.6303

0.15 6.6186 6.7727 6.7057 6.4297

T = 824

R2/ρ∗ 0.9 0.95 0.98 0.99

0.01 5.1163 5.2940 5.5422 5.8563

0.05 5.2390 5.1917 5.8121 6.5784

0.10 5.2941 5.2216 7.1039 7.2997

0.15 5.1271 5.4731 6.3576 7.4835
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Table III: 97.5% Critical /tβ,b with truncation

Bartlet Kernel

b=0.01

T = 66 T = 824

R2/ρ∗ 0.9 0.95 0.98 0.99 R2/ρ∗ 0.9 0.95 0.98 0.99

0.01 2.2745 2.2505 2.2118 2.2513 0.01 2.0296 2.0916 2.3673 2.3953

0.05 2.5212 2.4558 2.4436 2.3651 0.05 2.3191 2.4171 3.1651 3.7966

0.10 2.6392 2.6252 2.5951 2.4346 0.10 2.2691 2.6859 3.6640 4.3644

0.15 2.8249 2.9414 2.6986 2.5792 0.15 2.4115 2.9307 4.0783 5.0238

b=0.025

T = 66 T = 824

R2/ρ∗ 0.9 0.95 0.98 0.99 R2/ρ∗ 0.9 0.95 0.98 0.99

0.01 2.3740 2.3188 2.3121 2.3167 0.01 2.0716 2.1399 2.4084 2.4952

0.05 2.5790 2.4959 2.4760 2.4358 0.05 2.3280 2.3190 2.9500 3.5695

0.10 2.6332 2.6923 2.6557 2.5329 0.10 2.1949 2.4717 3.3066 3.8937

0.15 2.8342 2.9352 2.8628 2.6762 0.15 2.2878 2.6293 3.4925 4.2945

b=0.05

T = 66 T = 824

R2/ρ∗ 0.9 0.95 0.98 0.99 R2/ρ∗ 0.9 0.95 0.98 0.99

0.01 2.4323 2.4050 2.4113 2.3960 0.01 2.1446 2.2121 2.5079 2.5639

0.05 2.6295 2.5958 2.5598 2.5146 0.05 2.3681 2.3405 2.8822 3.3979

0.10 2.6598 2.7334 2.7109 2.6128 0.10 2.2340 2.3980 3.0940 3.6061

0.15 2.9221 2.9837 2.9556 2.7274 0.15 2.2996 2.5694 3.2672 3.9845
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Table III Continued: b=0.10

T = 66 T = 824

R2/ρ∗ 0.9 0.95 0.98 0.99 R2/ρ∗ 0.9 0.95 0.98 0.99

0.01 2.5851 2.6751 2.6531 2.6148 0.01 2.3736 2.4176 2.6094 2.8401

0.05 2.7599 2.7800 2.8257 2.8617 0.05 2.3952 2.4680 2.9625 3.4444

0.10 2.9623 3.0564 3.0828 2.9116 0.10 2.4149 2.6457 3.1360 3.8080

0.15 3.1468 3.2835 3.1851 2.9767 0.15 2.4382 2.6300 3.2601 4.0143

b=0.20

T = 66 T = 824

R2/ρ∗ 0.9 0.95 0.98 0.99 R2/ρ∗ 0.9 0.95 0.98 0.99

0.01 2.9634 3.0769 3.1090 3.1044 0.01 2.6123 2.8022 2.8317 3.2855

0.05 3.0695 3.3850 3.3537 3.2298 0.05 2.7121 2.9024 3.2624 3.8889

0.10 3.4254 3.5046 3.5650 3.3415 0.10 2.7421 2.9670 3.5548 3.7708

0.15 3.3997 3.6490 3.7471 3.5316 0.15 2.6950 2.9734 3.5922 4.0648

b=0.30

T = 66 T = 824

R2/ρ∗ 0.9 0.95 0.98 0.99 R2/ρ∗ 0.9 0.95 0.98 0.99

0.01 3.3862 3.5111 3.5533 3.5536 0.01 3.0563 3.0883 3.3946 3.4640

0.05 3.6554 3.6235 3.7013 3.6690 0.05 2.9838 3.1759 3.8025 4.3192

0.10 3.5426 3.8976 3.8257 4.1001 0.10 2.9875 3.4395 3.7616 4.6522

0.15 3.8838 4.1978 4.2413 3.9934 0.15 3.1186 3.2724 3.8732 4.7828

Note: Results for b > 0.30 are available upon request.
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Figure 6.1: T = 824: kernel estimates of densities of tβ,b when true R
2 = 0.10, ρ = 0.98

Note: in figure 4.1 to 4.4, the bench mark normal density is not plotted to ensure a clear
picture of the densities of the statistic. It is useful to note that the standard normal density
evaluated at the mean value 0 is 0.398, a lot higher than the densities shown in these four
figures. But note in Figure 4.5, normal density is plotted.
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Figure 6.2: T = 824: kernel estimates of densities of tβ,b when true R
2 = 0.10, ρ = 0.99
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Figure 6.3: T = 824: kernel estimates of densities of tβ,b when true R
2 = 0.15, ρ = 0.98
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Figure 6.4: T = 824: kernel estimates of densities of tβ,b when true R
2 = 0.15, ρ = 0.99
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Figure 6.5: T = 5000: true R2 = 0.10, ρ = 0.98
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Figure 6.6: Mean of R2 as a function of −c and δ
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Figure 6.7: Median of R2 as a function of −c and δ
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