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ABSTRACT

The bounded derivative theory (BDT) for hyperbolic systems with multiple timescales was originally applied
to the initialization problem for large-scale shallow-water flows in the midlatitudes and near the equator. Concepts
from the theory also have been used to prove the existence of a simple reduced system that accurately describes
the dominant component of a midlatitude mesoscale storm forced by cooling and heating. Recently, it has been
shown how the latter results can be extended to tropospheric flows near the equator. In all of these cases, only
a single type of flow was assumed to exist in the domain of interest in order to better examine the characteristics
of that flow. Here it is shown how BDT concepts can be used to understand the dependence of developing
mesoscale features on a balanced large-scale background flow. That understanding is then used to develop
multiscale initialization constraints for the three-dimensional diabatic equations in any domain on the globe.

1. Introduction

Initialization is defined as the preparation of the initial
data for a time-dependent system of ordinary or partial
differential equations with multiple timescales in order to
reduce the energy in the fast timescale components of the
ensuing solution while maintaining good accuracy of the
slowly evolving component. In the early days of meteo-
rology, the quasigeostrophic (QG) system was used to
describe large-scale midlatitude motions (Charney 1948;
Phillips 1956). The QG system does not contain any high-
frequency motions; that is, it is not a multiple timescale
system. However, later the meteorological community be-
gan to use the primitive equations (Hinkelmann 1959;
Smagorinsky 1963) that do include motions with different
timescales. When observational data are used as initial
values for a model based on the primitive equations (or
other forecast systems with multiple timescales), large-
amplitude, high-frequency gravity waves can be excited,
and those waves can have a detrimental effect on the phys-
ical parameterizations in the model. In the large-scale case,
it is well known that the removal of the gravity waves
from the solution has little impact on the accuracy of the
forecast. Thus to overcome the adverse impact of the grav-
ity waves on the physical parameterizations in the large-
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scale case, a number of initialization schemes have been
developed, beginning with the geostrophic approximation
and balance equation (e.g., Hinkelmann 1951; Charney
1955) and proceeding to increasingly more sophisticated
methods such as the nonlinear normal mode initialization
method (Machenhauer 1977; Baer 1977; Baer and Tribbia
1977) and the bounded derivative method (Kreiss 1979,
1980).

In the early theories of balanced large-scale flows in
the midlatitudes, the horizontal divergence was necessarily
an order of magnitude smaller than the vertical component
of the vorticity and all terms involving the horizontal di-
vergence were neglected in the time-dependent equation
for the horizontal divergence, resulting in the nonlinear
balance equation (e.g., Browning et al. 1980). However,
it has become clear that for slowly evolving smaller-scale
flows in the midlatitudes and slowly evolving flows near
the equator with a timescale of a day or less, the terms
involving the horizontal divergence must be retained
(Browning and Kreiss 1986, 1997; Browning et al. 2000).
Typically the domain of interest will contain a balanced
large-scale background flow and smaller-scale storms in
various stages of development. It is generally believed that
the majority of energy in the atmosphere is contained in
the large-scale motions. However, locally mesoscale fea-
tures can be dominant. Given these assumptions, a system
of equations for the evolution of mesoscale features in the
presence of a balanced large-scale background flow is de-
rived. The connection of this system with previous results
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is discussed. In particular, an initialization scheme when
both flows are present in the domain of interest will be
derived.

The outline of this paper is as follows. In section 2
the solution of the three-dimensional nonlinear equa-
tions in the presence of multiple scales of heating is
approximated by the sum of the balanced large-scale
flow for the large-scale component of the initial con-
ditions and heating and a residual piece. The nonlinear
system describing the evolution of the residual piece is
shown to be closely related to the mesoscale system
described by Browning and Kreiss (1997); that is, during
the timescale of the small-scale component of the heat-
ing, the dominant component of the residual piece af-
fects the balanced large-scale solution only in the do-
main of the support of the small-scale heating. In section
3 a scaling of the three-dimensional equations that si-
multaneously describes multiple scales of motion is in-
troduced. This scaling allows one to see how different
terms vary in importance in different situations. In sec-
tion 4 the scaling from section 3 is used to derive bound-
ed derivative theory (BDT) initialization constraints for
the case when multiple scales of motion are present in
the domain of interest. There it can be seen how QG
theory can be extended to handle the multiple-scale
case. The extension of the earlier theory of the proper
boundary conditions for BDT initialization constraints
(Browning and Kreiss 1982) to the three-dimensional
case is discussed in section 5. Numerical examples il-
lustrating the theory are presented in section 6. The
conclusions are contained in section 7.

2. Perturbations of balanced large-scale flow
For any fluid flow that has a decaying energy spec-

trum, the majority of the energy is contained in the low
wavenumber part of the spectrum. Here it is assumed
that the majority of the energy in the atmosphere is
contained in balanced large-scale motions and that,
though locally very important, the impact of a smaller-
scale storm on the large-scale part of the energy spec-
trum is not immediate; that is, it takes some time before
the energy in a smaller-scale storm has a significant
impact on the low wavenumber part of the energy spec-
trum. Note that because the kinetic energy in a smaller-
scale storm typically is larger than that in the local back-
ground flow, this assumption requires that smaller-scale
storms not be dense over the entire globe. Under these
assumptions, in this section it will be shown that a small-
er-scale storm can be considered to be a perturbation
on the balanced large-scale flow.

The dynamical equations describing adiabatic atmo-
spheric motions can be written in the form (Browning
and Kreiss 1986)

ds
5 0, (2.1a)

dt

du
211 r p 2 f y 5 0, (2.1b)xdt

dy
211 r p 1 fu 5 0, (2.1c)ydt

dw
211 r p 1 g 5 0, (2.1d)zdt

dp
1 gp(u 1 y 1 w ) 5 0, (2.1e)x y zdt

where r is the density, p the pressure, s 5 rp21/g (g 5
1.4), (u, y, w)* is the velocity, d/dt 5 ]/]t 1 u]/]x 1
y]/]y 1 w]/]z, f 5 f o 1 by is the Coriolis parameter
(in a typical midlatitude case, f o 5 1024 s21 and b 5
10211 m21 s21), and g 5 9.8 m s22 is the constant gravity
acceleration.

In the original BDT scaling of the Eulerian system
of equations (Browning and Kreiss 1986), the scaling
parameters L1 (U), L2 (V), and D (W) are the represen-
tative length (velocity component) scales along the x,
y, and z axes, respectively, and the dimensionless pa-
rameter S1 represents the maximum size of the deviation
of the pressure on a given height from the horizontal
mean of the pressure on that height divided by the mean.
In a typical midlatitude large-scale case these scaling
parameters have the values

L 5 L 5 1000 km, D 5 10 km, (2.2a)1 2

21 21U 5 V 5 10 m s , W 5 0.01 m s ,
22S 5 10 , (2.2b)1

where the timescale T 5 L1/U is on the order of a day.
The corresponding scaled system describing slowly
evolving large-scale midlatitude motions is

ds
L2 s̃(w 2 H ) 5 0, (2.3a)

dt

du
21 211 « (r p 2 f y) 5 0, (2.3b)0 xdt

dy
21 211 « (r p 1 fu) 5 0, (2.3c)0 ydt

dw
26 211 « (r p 1 p̃p 1 gs) 5 0, (2.3d)0 zdt

dp
21 221 « wp 1 « gp (u 1 y 1 «w ) 5 0, (2.3e)0z 0 x y zdt

where r0(z) and p0(z) are the dimensionless horizontal
means of the density and pressure, s0(z) 5 r0(z)p0(z)21/g,
s̃ 5 210s0z/s0 [the factor of 10 is included to ensure that
s̃ is O(1) (Browning and Kreiss 1986)], p̃ 5 2p0z/(gr0p0),
r and p are the deviations of the density and pressure from
their respective means, s 5 r/r0 2 (1/g)p/p0, (u, y, w)*
is the dimensionless velocity, d/dt 5 ]/]t 1 u]/]x 1 y]/
]y 1 «w]/]z, f is the dimensionless Coriolis parameter, g
is the dimensionless constant gravity acceleration, HL is
the dimensionless large-scale heating, and « 5 1021. In
the BDT, once a standard nondimensionalization is per-
formed and appropriate scaling parameters are chosen for
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the flow of interest, dimensionless quantities such as the
Rossby number are replaced by the appropriate power of
« for application of mathematical tools. Note that the same
variables have been used for both the dimensional and
dimensionless systems. This should cause no confusion
because in the rest of the theoretical presentation, only
dimensionless variables will be used.

In general the initial data for (2.1) contains infor-
mation for all three components of the solution, that is,
the slowly evolving component, the gravity wave com-
ponent (e.g., the large-scale gravity waves generated by
mesoscale storms), and the sound wave component. To
a first approximation, the latter two components satisfy
known linear differential equations and can be subtract-
ed from the solution of (2.1) following the procedures
in Browning and Kreiss (1997). Because these two com-
ponents of the solution currently are not accurately ob-
served and believed not to affect the large-scale solution
during a short-term large-scale forecast, they are re-
moved from the solution by initialization or numerical
methods. To ensure that the large-scale solution is free
of gravity and sound waves as is the standard practice,
compute the large-scale part (denoted by the superscript
L) of the initial vertical component of vorticity z L(x, y,
z, 0) 5 2 (x, y, z, 0) 1 (x, y, z, 0), determine theL Lu yy x

remaining large-scale dynamic variables from the
bounded derivative theory large-scale diabatic initiali-
zation constraints, and replace the large-scale compo-
nent of the initial conditions for (2.1) with these bal-
anced initial conditions.

Now solve the system:
Ld sL L L2 s̃ (w 2 H ) 5 0, (2.4a)

dt
Ld uL 21 21 L L1 « (r p 2 f y ) 5 0, (2.4b)0 xdt
Ld yL 21 21 L L1 « (r p 1 fu ) 5 0, (2.4c)0 ydt

Ld wL 26 21 L L L1 « (r p 1 p̃p 1 gs ) 5 0, (2.4d)0 zdt
Ld pL 21 L1 « w p0zdt

22 L L L1 « gp (u 1 y 1 «w ) 5 0, (2.4e)0 x y z

where dL/dt 5 ]/]t 1 uL]/]x 1 y L]/]y, using the bal-
anced large-scale initial conditions to obtain an ap-
proximation of the evolution of the balanced large-scale
solution. Then write the solution of (2.3) as the sum of
the solution of (2.4) and a residual variable (denoted by
the superscript R), for example, s 5 sL 1 sR. Substituting
these expressions into (2.3), the time-dependent nonlin-
ear system for the residual variables is

Rd sR R1 I(s) 2 s̃w 5 «F(s), (2.5a)
dt

Rd uR 21 21 R R1 I(u) 1 « (r p 2 f y ) 5 «F(u), (2.5b)0 xdt

Rd yR 21 21 R R1 I(y) 1 « (r p 1 fu ) 5 «F(y),0 ydt
(2.5c)

Rd wR 26 21 R R R1 I(w) 1 « (r p 1 p̃p 1 gs ) 5 «F(w),0 zdt
(2.5d)

Rd pR 21 R 22 R R R1 I(p) 1 « w p 1 « gp (u 1 y 1 «w )0z 0 x y zdt

5 «F(p), (2.5e)

where dR/dt 5 ]/]t 1 (uL 1 uR)]/]x 1 (y L 1 y R)]/]y
1 «(wL 1 wR)]/]z, I(q) 5 (uR 1 yR 1 «wR ) is aL L Lq q qx y z

linear combination of the undifferentiated unknown ve-
locity components, and F(q) 5 2wL is a large-scaleLqz

forcing term.
Given the assumption that the large-scale component

of the initial conditions for (2.1) is balanced, the large-
scale component of the initial conditions for (2.5) is
zero and the small-scale component is the same as the
small-scale component of the initial conditions for (2.1).
Because the initial conditions for (2.5) are of small hor-
izontal spatial scale and the forcing terms do not play
a significant role in the solution for several hours, the
appropriate scaling parameters are

L 5 L 5 100 km, D 5 10 km, (2.6a)1 2

21 21 23U 5 V 5 10 m s , W 5 1 m s , S 5 10 ,1

(2.6b)

where the timescale is on the order of a few hours
(Browning and Kreiss 1997). By comparing (2.6) with
(2.2), it can be seen that this scaling for the unknown
variables with superscript R can be accomplished by
making the change of independent variables

t 5 «t9, x 5 «x9, y 5 «y9,

and the change of dependent variables
R R R 22p 5 «p9, s 5 «s9, w 5 « w9

in (2.5). Then the dimensionless system that describes
mesoscale perturbations of balanced large-scale flow is

ds9
22 S1 I(s) 2 « s̃ (w9 2 H ) 5 «F(s), (2.7a)

dt
Rdu

21 R 21 «I(u) 1 r p9 2 f y 5 « F(u), (2.7b)0 x9dt
Rdy

21 R 21 «I(y) 1 r p9 1 fu 5 « F(y),0 y9dt
(2.7c)

dw9
3 22 21 41 « I(w) 1 « (r p9 1 p̃p9 1 gs9) 5 « F(w),0 zdt

(2.7d)

dp9
23 R R1 I(p) 1 « [w9p 1 gp (u 1 y 1 w9)]0z 0 x9 y9 zdt

5 «F(p), (2.7e)
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where d/dt 5 ]/]t9 1 (uL 1 uR)]/]x9 1 (y L 1 yR)]/]y9
1 («2wL 1 w9)]/]z, I(q) 5 uR 1 y R 1 «21w9 ,L L Lq q qx y z

and F(q) 5 2wL . Note that the change of independentLqz

variables is not applied to the known large-scale O(1)
coefficients and that the small-scale component of the
heating has been added following earlier results (Brown-
ing and Kreiss 1986; Browning and Kreiss 1997). In
previous papers where the main interest was in gravity
waves, the velocity coefficients in the advective terms
with superscript R can be ignored. However, when there
is a collection of storms, one cannot assume that the
large-scale velocity coefficients are constant and then it
is necessary to solve (2.7). But for mesoscale features
the same balance between the vertical velocity and heat-
ing also is present in (2.7) and to first approximation
the dominant component of the solution for the general
case satisfies the reduced system

Rdu
S L 21 R1 H u 1 r p9 2 f y 5 0, (2.8a)z 0 x9dt

Rdy
S L 21 R1 H y 1 r p9 1 fu 5 0, (2.8b)z 0 y9dt

S R R SH p 1 gp (u 1 y 1 H ) 5 0, (2.8c)0z 0 x9 y9 z

where d/dt 5 ]/]t9 1 (uL 1 uR)]/]x9 1 (y L 1 yR)]/]y9
1 HS]/]z. Note that the terms that are a product of the
heating and vertical shear are O(1) forcing terms.

Browning and Kreiss (1997) subtracted the solution
of the reduced system (2.8) from the solution of (2.7)
(in the simpler case mentioned above) to show that the
residual part of the solution satisfies a forced linear grav-
ity wave equation. By subtracting both of these com-
ponents of the solution from the solution of (2.7), it was
established that the gravity waves generated by a me-
soscale storm driven by prescribed cooling and heating
do not significantly interact with the dominant com-
ponent of the storm. And though this theory shows that
the gravity waves that are generated have very little
kinetic energy compared to the dominant component in
the neighborhood of the storm, it is still possible that
these large-spatial-scale gravity waves have some role
in initiating new storms some distance from their source.
As mentioned earlier, it is common practice in global
numerical weather prediction models to prepare the ini-
tial data or use numerical techniques (e.g., time filters)
to suppress any gravity waves that would be generated
by imbalances in the large-scale observational data. Be-
cause global models are used to provide time-dependent
boundary conditions for high-resolution nonhydrostatic
limited-area forecast models, this absence of gravity
wave information in the boundary data can lead to a
conflict between the balanced boundary conditions pro-
vided by a global model and the gravity waves generated
by small-scale heat sources in the interior of the limited-
area domain when those gravity waves encounter a
boundary of the domain of the limited-area forecast.
[This is essentially the same problem as in a two-way

interacting nested model where a feature is better re-
solved in the fine mesh than in the coarse mesh (Brown-
ing et al. 1973)]. This problem (and the similar problem
encountered when a small-scale storm encounters the
boundary) can be masked by the use of numerical dis-
sipation, but at the expense of numerical accuracy. If
the energy in the gravity wave component of a meso-
scale storm is sufficiently small and the mesoscale heat-
ing is confined to the interior of the limited area domain
during the forecast, the use of balanced global model
boundary data will not lead to a significant loss of fore-
cast accuracy or to large amplitude discontinuities at the
boundaries. If the reduced system (2.8) is used in the
limited area, no large-scale gravity waves will be gen-
erated and it is only necessary to ensure that the me-
soscale heating is confined to the interior of the limited-
area domain to avoid boundary data conflicts. These
issues will be addressed in detail in a forthcoming paper.

3. Midlatitude multiscale scaling

The first step in the application of the BDT is to scale
the time-dependent system according to the properties
of the slowly evolving motions of interest (Browning
et al. 1980). In the original application of the BDT to
the system of partial differential equations describing
all atmospheric motions, the system was scaled in a
general manner that was applicable to slowly evolving
atmospheric motions of any length scale (Browning and
Kreiss 1986). The general set of slowly evolving at-
mospheric motions can be divided into two cases. One
case comprises those motions where the forcing term
in the entropy (or potential temperature) equation is the
same order of magnitude as the horizontal advection
terms in that same equation. The other case is where
the forcing term in the entropy equation is an order of
magnitude or more larger than the horizontal advection
terms in that equation. Large-scale midlatitude motions
fall into the first case (Browning and Kreiss 1986), but
smaller-scale midlatitude and all equatorial flows fall
into the second case (Browning and Kreiss 1997;
Browning et al. 2000). In the second case, gravity waves
that have the same timescale as the dominant component
can be generated by the longwave part of the heating.
However, the length scale of the gravity waves is an
order of magnitude larger than that of the dominant
component and this fact must be kept in mind when
trying to initialize limited-area models based on the non-
hydrostatic system. As shown in the previous section,
initialization constraints for the large-scale part of the
initial data can be derived and the resulting large-scale
balanced solution subtracted from the solution of the
full system. Then initialization constraints for system
(2.7) that describes the residual part of the solution can
be determined. This two step process can also be com-
bined into a single step in order to avoid the solution
of two elliptic equations for the pressure at every ver-
tical level. To better understand how the BDT can be
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used to initialize the solution when motions from both
cases are present in the domain of interest (the most
likely case in practice), a single scaling that can be used
to describe typical flows from both cases will be intro-
duced. (In the following section this multiscale scaling
will be used to derive the one-step initialization
scheme.)

In the BDT, scaled systems corresponding to different
motions typically will have different powers of « in front
of each of the off-diagonal terms, for example, compare
(2.3) and (2.7). However, using parameters for the ex-
ponents of «, it is possible to combine two (or more)
scaled systems into a single one (this would be equiv-
alent to letting the Rossby number vary in the domain
of interest). In this vein consider the scaled system

ds
2212n2 « s̃ (w 2 H ) 5 0, (3.1a)

dt

du
2n 211 « (r p 2 f y) 5 0, (3.1b)0 xdt

dy
2n 211 « (r p 1 fu) 5 0, (3.1c)0 ydt

dw
2224n 211 « (r p 1 p̃p 1 gs) 5 0, (3.1d)0 zdt

dp
2312n 231n n1 « wp 1 « gp (u 1 y 1 « w )0z 0 x y zdt

2212n5 « G, (3.1e)

where d/dt 5 ]/]t 1 u]/]x 1 y]/]y 1 «nw]/]z, and the
remaining dimensionless variables are as described in
the previous section. Here n 5 1 for the large-scale case
and n 5 0 for the mesoscale case. The O(1) heating
terms H and G are assumed to be slowly varying func-
tions of the independent variables [for a discussion of
the validity of this assumption see Browning and Kreiss
(1997)]. Because the heating term G does not affect the
arguments to follow, for simplicity of presentation it
will be neglected.

4. Multiscale initialization constraints

The appropriate initialization constraints to ensure
that the solution will be slowly evolving in time can be
determined from the BDT requirement that a number
of the time derivatives of the scaled system at the initial
time be of order unity (Browning et al. 1980). This
continues to be true when multiple scales are present in
the domain of interest, but then the timescale can vary
from location to location and one must be careful to
ensure that time derivatives of a given order are locally
of order unity. To see how this works in practice, let us
apply this requirement to system (3.1). The first-order
time derivative of system (3.1) will be of order unity if
and only if

ds
222n 21 222nw 2 H 5 « s̃ 5 O(« ), (4.1a)

dt

du
21 n nr p 2 f y 5 2« 5 O(« ), (4.1b)0 x dt

dy
21 n nr p 1 fu 5 2« 5 O(« ), (4.1c)0 y dt

dw
21 214n 214nr p 1 p̃p 1 gs 5 2« 5 O(« ), (4.1d)0 z dt

dp
n n 32n« wp 1 gp (u 1 y 1 « w ) 5 2«0z 0 x y z dt

32n5 O(« ). (4.1e)

When a right-hand side of one of the equations of (4.1)
is small and to first approximation can be neglected, a
BDT initialization constraint is obtained for the corre-
sponding motion. The constraint obtained by neglecting
the right-hand side of (4.1a) is accurate only for the
mesoscale (n 5 0). The quasigeostrophic constraints
obtained from (4.1b) and (4.1c) are only accurate for
the large scale (n 5 1). Hydrostatic balance obtained
by neglecting the right-hand side of (4.1d) is accurate
for both (2.3) and (2.7), but not for smaller scales of
motion. The constraint obtained from (4.1e) is accurate
for all scales of motion. Thus in this form of the equa-
tions the choice of a reasonable set of constraints for
flows from both cases is not clear. However, consider
the change of variable suggested by the mesoscale case;
that is, define the new variable w9 by the relation

222nw 5 H 1 « w9. (4.2)

In terms of this new variable (3.1) becomes

ds
2 s̃w9 5 0, (4.3a)

dt

dz
n1 dz 1 « (w y 2 w u )x z y zdt

2n1 « ( f d 1 f y) 5 0, (4.3b)y

dd
2 n1 d 2 2J 1 « (w u 1 w y )x z y zdt

2n 21 21 « (r ¹ p 2 f z 1 f u) 5 0, (4.3c)0 y

dw9 dH
222n 2224n 21« 1 1 « (r p 1 p̃p 1 gs) 5 0,0 zdt dt

(4.3d)
dp

2312n 222n1 « (H 1 « w9)p0zdt
231n n 222n1 « gp [d 1 « (H 1 « w9) ] 5 0, (4.3e)0 z z

where J 5 uxy y 2 uyy x and the variables z 5 2uy 1
y x and d 5 ux 1 y y have been introduced in order to
simplify the derivation of the constraints (Browning and
Kreiss 1987). Now (4.3e) yields the requirement
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n 222nd 5 2« [H 1 « w9)z

21 222n 32n1 (gp ) (H 1 « w9)p ] 1 O(e ), (4.4a)0 0z

that is accurate for all scales of motion and ensures that
the constraint from (4.3b) is satisfied [recall that f y 5
O(«) for the large-scale case]. The requirement that aris-
es from (4.3c) is

dd
2 n 2¹ p 5 r f z 2 f u 2 « 1 d 2 2J0 y5 [dt

n1 « (w u 1 w y ) . (4.4b)x z y z 6]
For the large scale case (n 5 1), to first approximation
this is just the linear balance equation of quasigeo-
strophic theory (Charney 1948). However, when flows
from the second case are present, for example, when n
5 0, all terms must be retained [the extra terms can be
determined from the heating using (4.2) and (4.4a)].
Note that if the two step initialization process is used,
first the linear balance equation is solved on each ver-
tical level to balance the initial conditions for the large-
scale flow and then a second elliptic equation on each
level is solved to balance the initial conditions for the
small-scale flow. These two steps are combined in the
one-step procedure.

The time derivative of w9 is of order unity if and
only if

dH
21 214n 412nr p 1 p̃p 1 gs 5 2« 1 O(« ). (4.4c)0 z dt

Thus for the large-scale and mesoscale cases, hydro-
static balance is accurate. For the smaller-scale cases,
hydrostatic equilibrium can be replaced by an inho-
mogeneous version of the hydrostatic equation.

The only dynamical variable that can be used to rep-
resent the slowly evolving solution for all scales of mo-
tion anywhere on the globe is the vertical component
of vorticity [for a discussion of an alternative in the
midlatitudes see Browning et al. (1980)]. Therefore as-
sume that at a given time the vertical component of the
vorticity z is given and H and Ht are known (e.g., from
observations or a physical parameterization). The di-
vergence is known up to an error term O(«) from (4.4a).
(In the large-scale case the entire right-hand side can
be neglected and in the mesoscale case the w9 terms can
be neglected.) Then the horizontal velocity components
u and y can be determined up to an error term O(«)
(Browning et al. 1980). Subsequently the balanced pres-
sure can be determined from (4.4b) up to an error term
O(«) and then s (or the potential temperature) to the
same degree of accuracy from (4.4c). The only remain-
ing variable is w, which is known quite accurately for
flows from the second case but not for the large-scale
case. As in previous applications of the BDT (Browning
et al. 1980), requiring additional time derivatives to be
of order unity leads to additional and/or refined con-

straints. To simplify the presentation, in the following
derivation it is assumed that f is constant and that p̃ 5
0. Then following the derivation of the v equation in
the quasigeostrophic theory (Charney 1948), first dif-
ferentiate the large-scale version of (4.4b) with respect
to z and use hydrostatic balance to obtain

22gr ¹ s 5 f (r z) .0 0 z (4.5)

Applying the operator dh/dt 5 ]/]t 1 u(]/]x) 1 y(]/]y)
to this equation, (4.5) becomes

d s d zh h22gr ¹ 2 C 5 f r 2 C . (4.6a)0 2 0 11 2[ ] [ ]dt dt
z

The commutators C1 and C2 are defined by

] d d ]h hC 5 (r z) 2 (r z)1 0 0[ ] [ ]]z dt dt ]z

5 u (r z) 1 y (r z) , (4.6b)z 0 x z 0 y

d s dh h2 2C 5 ¹ 2 ¹ s2 dt dt

5 u s 1 2u s 1 u s 1 2u s 1 y sxx x x xx yy x y xy xx y

1 2y s 1 y s 1 2y s . (4.6c)x xy yy y y yy

Now replacing dhs/dt and dhz/dt using (3.1a) and (4.3b),
(4.6) becomes

2212n 2 22« gr s̃¹ (w 2 H ) 1 f (r d) 5 R , (4.7a)0 0 z 1

where

R 5 2gr C 2 fC ,1 0 2 1 (4.7b)

and on rearranging the terms slightly the elliptic equa-
tion for w is

2212n 2 2 21« ¹ (r w) 1 f (gs̃ ) (r w)0 0 zz

2212n 2 215 « r ¹ H 2 (gs̃ ) R . (4.8)0 1

If the heating is broken into its large- and small-scale
components, to first approximation (4.8) yields wR 5
HS 1 O(«2) in the domain of the small-scale heating as
required for slowly evolving solutions of (2.7). And
outside of the domain of the small-scale heating, (4.8)
reduces to the traditional elliptic equation for the vertical
velocity. In that region note that (4.8) basically ensures
that the second derivative of the horizontal divergence
d will be of order unity.

5. Boundary conditions for the initialization
constraints

An important part of the BDT for hyperbolic systems
with multiple timescales is the derivation of boundary
conditions for the elliptic initialization constraints from
the boundary conditions for the initial-boundary value
problem for the hyperbolic system. This consistency
mathematically ensures that the solution will be slowly
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evolving in time even in the presence of open bound-
aries. To see how this compatibility is achieved for the
three-dimensional diabatic system, consider (3.1) in the
domain x $ 0, 0 # y # 1, 0 # z # 1 with an open
boundary at x 5 0, periodicity in y, and solid walls at
z 5 0 and z 5 1. Numerous well-posed boundary con-
ditions with different physical properties exist, but here
it is convenient to assume that the one-dimensional in-
flow characteristic variables at an open boundary are
known because that automatically guarantees the well-
posedness of the initial boundary value problem
(Browning and Kreiss 1982). In the domain above, if
the normal velocity at x 5 0 is directed into the domain,
that is, if u(0, y, z, t) . 0, then the incoming charac-
teristic variables are s, u 1 «3/22np/ , y, and w,Ïgp r0 0

but if the normal velocity at x 5 0 is directed out of
the domain, that is, if u(0, y, z, t) , 0, then the only
incoming characteristic variable is u 1 « 3/22n p/

. Thus the only characteristic variable that canÏgp r0 0

be guaranteed to be present at a given boundary point
at x 5 0 at a given point in time is the variable u 1
«3/22np/ , which to first approximation is just theÏgp r0 0

normal velocity u (Browning and Kreiss 1982). [For the
large-scale case n 5 1, this is only accurate to O(«1/2),
but it can be iterated to provide higher accuracy if nec-
essary.] Given the normal velocity u at x 5 0, it is
possible to solve the Helmholtz equations

2 n¹ u 5 2z 1 « d , and (5.1a)y x

2 n¹ y 5 z 1 « d , (5.1b)x y

for u and y at each vertical level by using the additional
boundary condition

y (0, y, z, t) 5 u (0, y, z, t) 1 z(0, y, z, t), (5.2)x y

for y. [The horizontal divergence can be determined
from (4.4a) using the initial vorticity and heating data
as discussed in the previous section.] Also, it is possible
to solve (4.1b) for the normal derivative of p at x 5 0:

d uhnp 5 f r y 2 « r , (5.3)x 0 0 dt

which provides a boundary condition for (4.4b). Equa-
tion (4.4c) for s does not require a lateral boundary
condition, but the elliptic equation (4.8) for w does.
Differentiating (5.3) with respect to z and using the
hydrostatic approximation, (5.3) becomes

d u d uh hn n2gr s 5 f (r y) 2 « r 2 « r . (5.4)0 x 0 z 0 0z1 2dt dt
z

As in the derivation of the v equation, apply the operator
dh/dt to (5.4) to obtain

d sh2gr 2 C(x, s) 5 R , (5.5)0 21 2[ ]dt
x

where

d (r y) d d uh 0 h hnR 5 f 2 C(z, r y) 2 « r2 0 05 6 1 2[ ]dt dt dtz z

d d uh hn2 « r 0z 1 2dt dt

and the commutator C(d, q) is defined by

] d q d ]qh hC(d, q) 5 2 5 u q 1 y q .d x d y1 2 1 2]s dt dt ]s

Replacing dhs/dt using (2.3a), the Neumann boundary
condition

21(r w) 5 r H 1 (gs̃ ) [gr C(x, s) 2 R ] (5.6)0 x 0 x 0 2

for the elliptic equation (4.8) for w is obtained.

6. Numerical examples

It is common in practice to initially run a global nu-
merical weather prediction model based on the primitive
equations to provide a forecast of large-scale features
for several days and large-scale boundary data for fine
mesh limited-area models that are located over areas of
developing smaller-scale features. Here the effective-
ness of BDT multiscale initialization can be demon-
strated in a similar setting using the following combi-
nation of numerical models. A channel model (periodic
boundary conditions in x and solid walls at the remain-
ing boundaries) will be used as a representative of a
global model. The use of solid walls in the y direction
allows for the dependence of the balanced initial con-
ditions on the variation of the Coriolis factor without
the complications of spherical geometry. A model with
accurate and stable open boundary conditions in x and
solid walls at the remaining boundaries will be used as
a representative of a limited-area model (see detailed
discussion of numerical approximations used in this
model in the appendix). The initial data for the channel
model will be obtained by applying the channel version
of the BDT initialization package to a specified initial
streamfunction representing a typical large-scale flow
pattern. During the subsequent channel forecast, a spec-
ified mesoscale heating will be turned on in a typical
area of the large-scale pattern. Although the channel
model can accurately depict the large-scale flow in the
absence of the mesoscale heating with a relatively coarse
mesh, it was run with a sufficiently fine mesh (Dx 5
Dy 5 12.5 km, Dz 5 1 km) to resolve both the large-
scale and mesoscale flows to provide a sufficiently ac-
curate channel solution of the forced problem. The max-
imum of the mesoscale heating occurs at t 5 6 h. The
initial data for the limited-area model will be obtained
by applying the limited-area version of the BDT ini-
tialization package to the multiscale vorticity from the
channel model at t 5 3 h, that is, at the developing stage
of the mesoscale storm. Note that to balance the flow
at this period of time for the limited-area model requires
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FIG. 1. The channel model vertical component of vorticity z at z 5 3 km and t 5 0 h.
The length of a side of the square domain is 2000 km and the contour interval is 5 3 1026

s21.

both the mesoscale vorticity and heating. [In this paper
the mesoscale heating will be a specified mathematical
function in order to demonstrate the theory in a simple
setting. However, the limited-area BDT initialization
package was originally developed for the Air Force Of-
fice of Scientific Research using high-resolution Offut
Air Force Base aviation (AVN) vorticity data and the
Kuo parameterization scheme.] It will be shown that
both the channel and limited-area model solutions
evolve slowly in time and that the limited-area model
reproduces the multiscale channel solution very accu-
rately.

The original streamfunction used as the starting point
for the channel model initialization procedure was

21c 5 2(2p) u Y sin(2px/X )[1 2 cos(2py/Y )]1

3 [sin(pz/z ) 1 0.1], (6.1a)T

where X and Y are the lateral dimensions of the domain,
zT is the top of the model domain, and u1 5 10 m s21.
The channel model was run in a domain with X 5 Y 5
2000 km and zT 5 12 km. Thus the horizontal part of
this streamfunction represents a large-scale high pres-
sure center followed by a large-scale low pressure cen-
ter. The basic horizontal pattern is multiplied by half a

sine wave in the vertical direction plus a constant to
ensure that the pattern is also present at the surface and
top of the model domain. At the suggestion of John
Brown (NOAA Forecast Systems Laboratory) the mean
wind profile

u(z) 5 5 1 10 sin(0.75pz/z )T (6.1b)

was added to the value for u(2cy) obtained from (6.1a)
in order to obtain a more realistic mean wind profile.
The 5 m s21 constant wind ensures that u(x, y, z, 0) .
0 so that the western boundary is an inflow boundary
and the eastern boundary is an outflow boundary. This
makes it possible to distinguish any problems that are
peculiar to one or the other type of flow at the bound-
aries. Figure 1 shows the initial large-scale vertical com-
ponent of vorticity corresponding to (6.1) at z 5 3 km
for the channel model. In both numerical models, the
mean atmospheric profiles were based on an isothermal
atmosphere at rest (T0 5 300 K) and the Coriolis pa-
rameter midlatitude values ( f 0 5 1024 s21 and b 5 10211

m21 s21). For these values, the balanced initial fields p
and w at z 5 3 km obtained by solving the BDT elliptic
constraints (4.4b) and (4.8) with the appropriate bound-
ary conditions for the channel taken from section 5 are
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FIG. 12. The open boundary model vertical velocity w at z 5 3 km and t 5 6 h. The
length of a side of the square domain is 2000 km and the contour interval is 0.04 m s21.

shown in Figs. 2 and 3. The two-dimensional elliptic
equations for u, y, and p were solved using the routine
HWSCRT from FISHPACK (Swarztrauber et al. 1975)
and the three-dimensional elliptic equation for w was
solved using MUDPACK (Adams 1989).

The mesoscale heating (as defined in Browning and
Kreiss 1997) is

2 2 2 22(x2u t20.5X ) /r 2(y20.5Y) /r0 e eH 5 20.50e e
2 22(t2633600) /(233600)3 sin(2pz/z )e , (6.2)T

where u0 5 10 m s21 and re 5 50 km. The mesoscale
heating is a Gaussian bell in space (with an e-folding
parameter re) times a full sine wave in z times a Gaussian
bell in time (with an e-folding parameter of 2 h). It
initially is centered at the middle of the domain and
translates in the x direction in time with a speed u0.
Figures 4–6 show the fields z, p, and w at z 5 3 km
and t 5 6 h obtained from the channel model version
of the well-posed multiscale model. The impact of the
mesoscale heating is clearly evident in these figures.

All variables from the channel model were saved on
disk at 3 h. Figures 7–9 show the channel model fields
z, p, and w at z 5 3 km at t 5 3 h. In addition, all
variables at the lateral boundaries x 5 0 and x 5 X for
3 h # t # 6 h were saved on disk. (Actually only the

inflow variables need be saved on the lateral boundaries.
But in practice, the number of inflow variables at a given
lateral boundary point can change in time so that it is
easier to save all variables at the lateral boundaries and
then form the appropriate inflow variables at a given
lateral boundary point at a given point in time.) When
the variables from the channel model at t 5 3 h were
used as initial data for the open boundary model using
the accurate and stable numerical approximations dis-
cussed in the appendix, the channel solution was re-
produced extremely accurately just as in the shallow
water case (Browning and Kreiss 1982). The channel
model vorticity at t 5 3 h was used as input to the
limited-area version of the BDT initialization package
applied over the same domain and with the same mesh
used for the channel model (for easier comparison of
fields). Figures 10–11 show the limited-area balanced
fields p and w at z 5 3 km and t 5 3 h obtained by
solving the BDT elliptic constraints (4.4b) and (4.8)
with the appropriate open boundary conditions taken
from section 5. Note the similarity between the limited-
area balanced fields in the latter figures and the corre-
sponding channel model fields at t 5 3 h in Figs. 8–9.
The well-posed limited-area version of the multiscale
model was started from the limited-area balanced data.
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FIG. 13. The open boundary model pressure p as a function of time at the three grid
points A 5 (0, 80, 3), B 5 (40, 80, 3), and C 5 (80, 80, 3). The abscissa is time (hours)
and the ordinate is pressure (kg m21 s22).

Figure 12 shows the multiscale limited-area model field
w at z 5 3 km and t 5 6 h and this result should be
compared with the corresponding channel model field
in Fig. 6. Define the relative l2 error in the field q by

E(q) 5 \q 2 q )\/\q \,c l c

where the subscript c denotes a channel model field, the
subscript l denotes a limited-area model field, and the
norm is the standard l2 norm. Then at t 5 6 h, E(p) 5
0.01 and E(w) 5 0.10. Thus the contour plot of the
limited-area model pressure at t 5 6 h is indistinguish-
able from the channel model pressure at t 5 6 h shown
in Fig. 5. The larger error in w is reasonable given the
skewing in the system (Browning and Kreiss 1990) and
the difference between the balanced initial fields p and
w computed from the limited-area version of the BDT
initialization package at t 5 3 h and the corresponding
channel model fields at that time [also see discussion
pertaining to this issue in Browning et al. (1997)]. Fig-
ure 13 shows the time variation of the pressure at the
three grid points A 5 (0, 80, 3), B 5 (40, 80, 3), and
C 5 (80, 80, 3). This plot shows that the initialization
procedure for the open boundary model is working very
well.

The same series of tests was run at the equator with
similar results. At the equator f 5 by so the ellipticity
of the operator in the equation (4.8) for w breaks down.

However, near the equator (4.8) still provides the correct
balance between w and H. At the equator the change of
variables w 5 H 1 w9 was made in (4.8) and the value
of f near the equator set to a small value so that the
elliptic solver would not stop due to the ellipticity prob-
lem. Although convergence was not achieved, the value
of w9 was small and the result of reconstructing w re-
sulted in an accurate approximation of the balanced val-
ue. Because the change of variable can be used any-
where on the globe, the initialization procedure is glob-
ally applicable.

It should be noted that the same resolution was used
in both models for clarity of presentation. In practice,
a limited-area model uses a smaller grid spacing than
its global counterpart in order to resolve the small-scale
features that cannot be resolved by the global model.
In previous applications of the Bounded Derivative The-
ory and in the above set of experiments, the continuum
elliptic initialization constraints were solved by the most
efficient numerical methods available and the resulting
data produced a slowly evolving solution in a model
using an unrelated numerical approximation of the evo-
lution equations. Thus if one uses a numerical method
that is sufficient to accurately approximate the contin-
uum equations of motion for the scales in the domain
of interest, a difference in resolution between the models
is not a problem.
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7. Conclusions

The applicability of bounded derivative initialization
to the case when heating terms with different space and
timescales are present in an arbitrary domain on the
globe has been demonstrated. There are many advan-
tages of this approach. The requisite boundary condi-
tions for the elliptic constraints that must be satisfied
by a slowly evolving solution arise naturally from the
well-posed boundary conditions for the three-dimen-
sional hyperbolic system. This compatibility between
the boundary conditions ensures that the solution of the
hyperbolic system will evolve on the slow timescale
(Browning and Kreiss 1982). Also Kreiss (1979) has
shown that any scheme that leads to a slowly evolving
solution will satisfy the same constraints as the scheme
obtained from the bounding of an appropriate number
of time derivatives. In particular, this means that any
initialization scheme will have to satisfy the elliptic con-
straints derived in section 4. The most efficient way to
solve the constraints is to use fast elliptic solvers, for
example, fast Fourier transforms and/or multigrid iter-
ative methods. Any other method, for example, digital
filtering (Lynch 1985), will be much less efficient in
solving these constraints. And once the initial vorticity
and a heating parameterization are provided, all other
variables are determined by the initialization constraints.
Any inconsistencies in these remaining variables can be
immediately tracked back to inaccuracies in the initial
vorticity data and/or the physical parameterizations, that
is, there are no complicated intervening processes to
confuse the source of the problem. This already has
proven invaluable in tracking down conceptual errors
in various physical parameterizations.
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APPENDIX

Numerical Model Details

To describe the numerical approximation of the di-
mensional version of the multiscale system for the open
boundary case, consider the finite-difference grid G 5
{iDx, jDy, kDz, nDt : 0 # i # I, 0 # j # J, 0 # k #
K, n $ 21}, where I, J, and K are the number of grid
intervals in the x, y, and z directions, Dx, Dy, and Dz
are the corresponding grid increments, and Dt is the
time step. The standard notation is used to denotenui,j,k

the value of a grid function at the point (xi, yj, zk, tn)
and missing subscripts or superscripts imply the nominal

value of the missing variable. Define the finite-differ-
ence operators

D [ (T 2 T )/(2Dt), (A.1a)t 1t 2t

2[2T 1 4T 2 1.5(T 1 T )]/(2Dx),1x 1x 1t 2t

i 5 0,
D [ (T 1 T )/(2Dx), 1 # i # I 2 1,x 1x 2x

22[2T 1 4T 2 1.5(T 1 T )]/(2Dx),2x 2x 1t 2t
i 5 I,

(A.1b)

2[2T 1 4T 2 1.5(T 1 T )]/(2Dy),1y 1y 1t 2t

j 5 0,
D [ (T 1 T )/(2Dy), 1 # j # J 2 1,y 1y 2y

22[2T 1 4T 2 1.5(T 1 T )]/(2Dy),2y 2y 1t 2t
j 5 J,

(A.1c)

2[2T 1 4T 2 1.5(T 1 T )]/(2Dz),1z 1z 1t 2t

k 5 0,
D [ (T 1 T )/(2Dz), 1 # k # K 2 1,z 1z 2z

22[2T 1 4T 2 1.5(T 1 T )]/(2Dz),2z 2z 1t 2t
k 5 K,

(A.1d)

where T1d and T2d are the standard forward and back-
ward translation operators along the d axis. Note the
change in the definition of a finite-difference approxi-
mation of a spatial derivative at a boundary to ensure
stability for the initial-boundary value problem (Gus-
tafsson et al. 1972). The second-order finite-difference
approximation of the multiscale system is given by

D s 1 uD s 1 yD s 1 wD s 2 s̃ (w 2 H ) 5 0, (A.2a)t x y z

21D u 1 uD u 1 yD u 1 wD u 1 r D p 2 f y 5 0,t x y z 0 x

(A.2b)

21D y 1 uD y 1 yD y 1 wD y 1 r D p 1 fu 5 0,t x y z 0 y

(A.2c)
D w 1 uD w 1 yD w 1 wD wt x y z

211 a(r D p 1 p̃p 1 gs) 5 0, (A.2d)0 z z

D p 1 uD p 1 yD p 1 wD p 1 wpt x y z 0z

1 gp (D u 1 D y 1 D w) 5 0, (A.2e)0 x y z

where f 5 f 0 1 by and a 5 (Dz/Dx)2. If the values
of the grid functions at n 5 21 and n 5 0 are known,
then (A.2) can be used to consecutively determine the
values of the grid functions at n . 0. Note that at the
boundaries the inflow variables are assumed given and
the values of the outflow variables are determined from
the appropriate combinations of values from (A.2). Then
the values of the original variables can be determined
from the inflow and outflow variables (Browning and
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Kreiss 1982). The numerical approximations were com-
puted with I 5 J 5 160, K 5 12, and Dt 5 10 s.
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